K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

hơi nhiều nhỉ

23 tháng 1 2017

Sao bạn đăng nhiều thế !

hoa mắt thì làm sao giải cho bạn được

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

22 tháng 10 2023

a)

Các số nguyên x thỏa mãn là:

\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)

Tổng các số nguyên trên là:

\((8-10).19:2=-19\)

b) 

Các số nguyên x thỏa mãn là:

\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)

Tổng các số trên là: 

\((10-9).20:2=10\)

c) Các số nguyên x thỏa mãn là:

\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)

Tổng các số nguyên đó là: 

\((16-15).32:2=16\)

 

25 tháng 3 2022

-Đặt \(x^2+8x=a^2\)

\(\Rightarrow x^2+8x+16=a^2+16\)

\(\Rightarrow\left(x+4\right)^2-a^2=16\)

\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)

-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)

\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)

\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)

\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)

-Vậy \(x\in\left\{0;1\right\}\)

 

 

 

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

25 tháng 3 2015

Ta có 46y là số chẵn với mọi y.

Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)

=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2

=>y=(2004-59.2)/46=41 

25 tháng 3 2015

bài 1: x=2 ; y=41

bài 2: 3

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks

 

Anh thấy ảnh lỗi em ạ

25 tháng 9 2021

Mik ko thấy ảnh đâu bn ơi

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........