K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Do x+ y= 1 nên

S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y ,   d o   x + y = 1 = 16 x 2 y 2 - 2 x y + 12

Đặt t= xy . Do x≥ 0 ; y≥0  nên

  0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4

Xét hàm số f(t) = 16t2- 2t + 12  trên [0 ; 1/4].

Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16  .

Bảng biến thiên

Từ bảng biến thiên ta có:

m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ;         m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2

 

Vậy giá trị lớn nhất của S là 25/2 đạt được khi 

x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2

giá trị nhỏ nhất của S  là 191/ 16 đạt được khi

Chọn A.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x =  \pm 2\)

b) \({x^3} =  - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x =  - 2.\)

- Chú ý: 

Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.

21 tháng 12 2019

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

24 tháng 4 2019

29 tháng 7 2021

bằng còn cái nịt

7 tháng 9 2019

14 tháng 12 2023

Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:

 

x + 2y = a/b (1)

2x - y = c/d (2)

 

Trong đó a, b, c, d là các số nguyên và b, d khác 0.

 

Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:

 

2(a/b - 2y) - y = c/d

2a/b - 4y - y = c/d

2a/b - 5y = c/d

 

Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.

 

Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.

 

Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.

1 tháng 11 2017

 

7 tháng 5 2018

Chọn C.

Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.

Cách giải:

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Bài 1:

$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$

$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:

$2x-1=x-1\Leftrightarrow x=0$  (không thỏa mãn vì $x\geq 1$)

Vậy không tồn tại $x$ thỏa đề.

 

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Bài 2:

Nếu $x\geq \frac{1}{3}$ thì:

$3x-1=2x+3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{3}$ thì:

$1-3x=2x+3$

$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)

Vậy......