K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Đơn giản biểu thức ta được:

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)

\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)

Ta bắt đầu tìm \(MIN:\)

Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\) 

1 tháng 5 2017

Tìm \(MAX\) cho bạn luôn:

Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)

Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)

\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)

\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)

\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)

Để  \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1

\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0

Vậy không tìm được \(B_{max}\)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai

Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

24 tháng 12 2015

Ta  có x. (-x)=x.x.(-1)=-x^2>0

       ==> x^2<0 (vì âm của nó là dương)       (1)

              mà x>0==>x^2>0                          (2)

Từ (1) và (2) ==> mâu thuẫn

Vậy x thuộc rỗng