tìm x,y,z biết x,z tỉ lệ thuận với 3,4; y,z tỉ lệ thuận với 5,7 và 2x + 3y -z = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)
\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10
1.
a) Theo đề bài, vì x và y tỉ lệ thuận với 3, 4 nên:
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\) và \(x+y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{4}=2\Rightarrow y=2.4=8\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;8\right).\)
b) Theo đề bài, vì a và b tỉ lệ thuận với 7, 9 nên:
\(\Rightarrow\frac{a}{7}=\frac{b}{9}.\)
\(\Rightarrow\frac{3a}{21}=\frac{2b}{18}\) và \(3a-2b=30.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{7}=10\Rightarrow a=10.7=70\\\frac{b}{9}=10\Rightarrow b=10.9=90\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(70;90\right).\)
Chúc bạn học tốt!
\(\dfrac{x}{y}=-\dfrac{2}{5}\Rightarrow x=-\dfrac{2}{5}y;\dfrac{y}{z}=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{4}z\\ \Rightarrow x=-\dfrac{2}{5}y=-\dfrac{2}{5}\cdot\dfrac{1}{4}z=-\dfrac{1}{10}z\\ z=5\Rightarrow x=-\dfrac{1}{2}\\ z=-\dfrac{1}{5}\Rightarrow x=\dfrac{1}{50}\\ z=30\Rightarrow x=-3\)
Theo đề: \(\left\{{}\begin{matrix}x=-\dfrac{2}{5}y\\y=\dfrac{1}{4}z\end{matrix}\right.\Rightarrow x=-\dfrac{2}{5}y=-\dfrac{2}{5}\cdot\dfrac{1}{4}z=-\dfrac{1}{10}z\)
\(\left\{{}\begin{matrix}z=5\Rightarrow x=-\dfrac{1}{10}\cdot5=-\dfrac{1}{2}\\z=-\dfrac{1}{5}\Rightarrow x=-\dfrac{1}{10}\left(-\dfrac{1}{5}\right)=\dfrac{1}{50}\\z=30\Rightarrow x=-\dfrac{1}{10}\cdot30=-3\end{matrix}\right.\)
x tỉ lệ thuận với y theo hệ số tỉ lệ k=0,5 nên x=0,5y
z tỉ lệ thuận với y theo hệ số tỉ lệ là k=8/3 nên z=8/3y
=>\(\dfrac{x}{z}=\dfrac{1}{2}:\dfrac{8}{3}=\dfrac{1}{2}\cdot\dfrac{3}{8}=\dfrac{3}{16}\)
=>x=3/16z
=>z=16/3x
=>z và x tỉ lệ thuận với hệ số tỉ lệ là k=16/3
Vì x và z tỉ lệ thuận với 3 và 4 => \(\frac{x}{3}=\frac{y}{4}\)(1)
Vì y và z tỉ lệ thuận với 5 và 7 => \(\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
+) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{36}{62}=\frac{18}{31}\)
=> x = 18/31 .15 = 270/31
y = 18/31.20 = 360/31
z = 18/31.28 = 504/31
x,z tỉ lệ thuận với 3, 4
=> \(\frac{x}{3}=\frac{z}{4}\)(1)
y, z tỉ lệ thuận với 5, 7
=> \(\frac{y}{5}=\frac{z}{7}\)(2)
và 2x + 3y - z = 36 (3)
Từ (1), (2) và (3)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{z}{4}\\\frac{y}{5}=\frac{z}{7}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}\times\frac{1}{7}=\frac{z}{4}\times\frac{1}{7}\\\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{z}{28}\\\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{42+60-28}=\frac{36}{74}=\frac{18}{37}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{18}{37}\cdot21=\frac{378}{37}\\y=\frac{18}{37}\cdot20=\frac{360}{37}\\z=\frac{18}{37}\cdot28=\frac{504}{37}\end{cases}}\)