Bài 1: Cho▲ABC cân tại A; Trên tia đối của BCC lấy điểm D; trên tia đối CB lấy điểm E sao cho BD=CE
a. Chứng minh ▲ADE cân
b. Kẻ BH⊥AD (H∈AD) kẻ CK⊥AE (K∈AE). Chứng minh BH=CK
c. Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác y.
Bài 2: Cho ▲ABC vuông cân tại A; Trên cạnh AB lấy điểm D; trên cạnh AC lấy điểm E sao cho AD:AE. Các đường thẳng vuông góc kẻ từ A; E với CD cắt BC ở G và H. Đường thẳng EH cắt AB ở M. Đường thẳng kẻ từ A và //BC cắt MH ở I
a. ▲ACD=▲AME
b. ▲AGB=▲MIA
c. BG=GH.
*Mọi người giúp mik giải bài tập nha. Cảm ơn mn nhiều ạ*
1:
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
góc HDB=góc KEC
=>ΔHBD=ΔKCE
=>HB=KC
c: góc HBD=góc KCE
=>góc OBC=góc OCB
=>ΔOBC cân tại O
Cảm ơn bạn đã giải giúp mik bài tập này ạ.