cho góc aob bằng 100 độ vẽ tia om là tia phân giác của góc aob từ a kẻ góc x o a bằng 130 độ; từ B kẻ góc ybo=50 độ. Chứng minh by//ax
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
\(\widehat{AOD}=\widehat{AOB}-\widehat{BOD}\)
\(\Rightarrow\widehat{AOD}=130^0-90^0=40^0\) [ 1 ]
Mặt khác
\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}\)
\(\Rightarrow\widehat{BOC}=130^0-90^0=40^0\) [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
\(\widehat{AOD}=\widehat{BOC}=40^0\)
b.Ta thấy
\(\widehat{AOB}=\widehat{AOD}+\widehat{COD}+\widehat{BOC}\)
\(\Rightarrow\widehat{COD}=\widehat{AOB}-2\widehat{AOD}\)[ vì góc AOD = góc BOC theo câu a ]
\(\Rightarrow\widehat{COD}=130^0-2.40^0\)
\(\Rightarrow\widehat{COD}=130^0-80^0=50^0\)
Vậy góc COD = 50độ
c.Vì OM là tia phân giác góc COD nên
\(\widehat{COM}=\widehat{DOM}=\frac{\widehat{COD}}{2}=\frac{50^0}{2}=25^0\)
Ta có
\(\widehat{AOM}=\widehat{AOD}+\widehat{DOM}\)
\(\Rightarrow\widehat{AOM}=40^0+25^0=65^0\)
mà \(\widehat{BOM}=\widehat{BOC}+\widehat{COM}\)
\(\Rightarrow\widehat{BOM}=40^0+25^0=65^0\)
Suy ra \(\widehat{AOM}=\widehat{BOM}\)
Vậy OM là tia phân giác góc AOB
Chúc bạn học tốt
a) Ta có AOC = BOD (= 90o)
=> AOC - COD = BOD - COD
=> AOD = BOC
b) Ta có AOC + BOC = AOB
90o + BOC = 130o
BOC = 40o
Ta có COD + BOC = DOB
COD + 40o = 90o
COD = 50o
c) Ta có OM là tia phân giác của COD
=> DOM = MOC
=> DOM + AOD = MOC + COB (AOD = COB)
=> AOM = MOB
Mà OM nằm giữa hai tia OA và OB
=> OM là tia phân giác của AOB
Tương tự cho trường hợp ngược lại