Cho tam giác ABC có góc B> góc C. Phân giác ngoài góc A cắt BC tại I, biết góc A=60 độ; góc AEB=15 độ. Tính số đo góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải : a) Ta có : góc XAB = ( góc ABC + góc ACB ) => 1/2 góc BAX = 1/2 ( góc ABC + góc ACB )
=> góc EAB = 1/2 ( góc B + góc C ) = B+ C/2 .
b) Ta có : góc B + góc C = 1800 - 600 = 1200 => góc EAB = 1/2.120 = 600. Xét tam giác AEC ta lại có : góc C = 1800 - góc EAC - góc AEC = 1800 - ( góc EAB + góc ABC ) - góc CEA = 1800 - ( 600 + 600 ) - 150 = 450. Xét tam giác ABC : góc A + góc B+ góc C = 1800
=> góc B = 1800 - góc A - góc C = 1800 - 600 -450 = 750 .
\(a,\widehat{C}=180^0-\widehat{A}-\widehat{B}=75^0\\ b,=180^0-\widehat{C}=105^0\\ c,\text{Đề trùng câu b}\)
a) Xét tam giác ABC có:
\(\widehat{BAC}\) \(\text{+}\) \(\widehat{ABC}\) \(\text{+}\) \(\widehat{ACB}\) \(=180^o\) (Tổng 3 góc trong tam giác).
Thay số: \(60^o+45^o+\) \(\widehat{ACB}\) \(=180^o\).
\(\Rightarrow\) \(\widehat{ACB}\) \(=75^o.\)
b) Số đo góc ngoài đỉnh C là:
\(180^o-\) \(\widehat{ACB}\) = \(180^o-\) \(75^o=105^o.\)
Gọi Ax là đường kéo dài tạo ra góc ngoài tại đỉnh A.
Ta có: \(\widehat{BAC}+\widehat{BAx}=180^o\) (kề bù)
hay \(60^o+\widehat{BAx}=180^o\)
\(\Rightarrow\widehat{BAx}=180^o-60^o=120^o\)
Mà AE là tia p/g \(\widehat{BAx}\)
=> \(\widehat{BAE}=\widehat{EAx}=\frac{120^o}{2}=60^o\)
Lại có: \(\widehat{BAE}+\widehat{AEB}+\widehat{EBA}=180^o\) (tổng các góc của Δ)
hay \(60^o+15^o+\widehat{EBA}=180^o\)
\(\Rightarrow\widehat{EBA}=180^o-60^o-15^o=105^o\)
mà \(\widehat{BAC}+\widehat{C}=\widehat{EBA}\) (t/c góc ngoài của Δ)
hay \(60^o+\widehat{C}=105^o\Rightarrow\widehat{C}=105^o-60^o=45^o\)
Vậy \(\widehat{C}=45^o\)