Bai 1: Cho tam giac ABC nhon, duong cao BD, CE
a) CMR: tam giac ABD dong dang voi tam giac ACE
b) CMR: goc BED + goc BCD = 180 do
c) Cho goc BAC = 60 do; dien tich tam giac AED = 90 do . Tinh tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD\sim ACE\left(g-g\right).\)
Chúc bạn học tốt!
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
Hình bạn tự vẽ nha :
a) Xét tam giác AEB và tam giác AFC có :
A là góc chung
E = F = 90° ( gt )
=> tam giác AEB đồng dạng với tam giác AFC ( g - g )
a: Xét ΔABD vuông tại D vàΔACE vuông tại E có
góc A chung
Do đó: ΔABD đồng dạng với ΔACE
b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ