Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
b ) Xét tam giác BMD và tam giác CNE , có :
BD = CE ( gt)
góc MBD = góc ABC
góc NCE = góc ACB
mà góc ABC = góc ACB nên góc MBD = góc NCE
=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )
=> DM = EN ( 2 cạnh tương ứng )
c ) Xét tam giác MBA và tam giác NCA , có :
AB=AC ( gt)
MB = NC ( tam giác BMD = CNE )
180 - góc ABC = góc ABM
180 - góc ACB = góc ACN
mà góc ABC = góc ACB nên góc ABM = góc ACN
=> tam giác MBA = tam giác NCA (c.g.c)
=> AM = AN ( 2 cạnh tương ứng)
=> tam giác AMN cân
1.c/m tam giac ABE đồng dạng với tam giác ACF
xét 2 tam giác ABE va tam giác ACF có
goc AEB=goc AFC
góc A chung
suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)
2.c/m HE.HB=HC.HF
xét 2 tam giác EHC và FHB có
goc HEC=goc HFB
góc EHC=góc FHB(đ đ)
suy ra 2 tam giác EHC đồng dạng với tam giác FHB
nên ta có EH/FH=HC/HB=EC/FB
mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)
cho lời nhân xét nhé
1. c/m tam giác ACF đồng dạng tam giác ABE
xét tam giác ACF và tam giác ABE
có góc AEB=góc AFC
góc A chung
suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)
2. c/m HE.HB=HC.HF
Xét 2 tam giác HEC và tam giác HFB
Có góc HEC= góc HFB
góc EHC=góc FHB(đ.đ)
suy ra tam giác HEC đồng dạng với tam giác HFB
Nên ta có HE/HF=HC/HB=EC/FB
Suy ra HE.HB=HF.HC(đpcm)
cho mk lời nhận xét nhé
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD\sim ACE\left(g-g\right).\)
Chúc bạn học tốt!