K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD\sim ACE\left(g-g\right).\)

Chúc bạn học tốt!

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

29 tháng 7 2015

b ) Xét tam giác BMD và tam giác CNE , có :

BD = CE ( gt)

góc MBD = góc ABC 

góc NCE = góc ACB

mà góc ABC = góc ACB nên góc MBD = góc NCE

=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )

=> DM = EN ( 2 cạnh tương ứng )

29 tháng 7 2015

c ) Xét tam giác MBA và tam giác NCA , có :

AB=AC ( gt)

MB = NC ( tam giác BMD = CNE )

180 - góc ABC = góc ABM

180 - góc ACB = góc ACN

mà góc ABC = góc ACB nên góc ABM = góc ACN

=> tam giác MBA = tam giác NCA (c.g.c)

=> AM = AN ( 2 cạnh tương ứng)

=> tam giác AMN cân 

9 tháng 5 2016

e ở đâu thế

26 tháng 3 2016

1.c/m tam giac ABE đồng dạng với tam giác ACF

xét 2 tam giác ABE va tam giác ACF có

goc AEB=goc AFC

góc A chung

suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)

2.c/m HE.HB=HC.HF

xét 2 tam giác EHC và FHB có

goc HEC=goc HFB

góc EHC=góc FHB(đ đ)

suy ra 2 tam giác EHC đồng dạng với tam giác FHB

nên ta có EH/FH=HC/HB=EC/FB 

mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)

cho lời nhân xét nhé

26 tháng 3 2016

1. c/m tam giác ACF đồng dạng tam giác ABE

xét tam giác ACF và tam giác ABE

có góc AEB=góc AFC

góc A chung

suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)

2. c/m HE.HB=HC.HF

Xét 2 tam giác HEC và tam giác HFB

Có góc HEC= góc HFB

góc EHC=góc FHB(đ.đ)

suy ra tam giác HEC đồng dạng với tam giác HFB

Nên ta có HE/HF=HC/HB=EC/FB

Suy ra HE.HB=HF.HC(đpcm)

cho mk lời nhận xét nhé