Khẳng định " tồn tại tam giác có độ dài 3 cạnh là a ; b ; c sao cho a=2b , b=2c " là đúng hay sai ( gải thích tại sao nha ) m.n giúp mk với akaka
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai vì:
a = 2b; b = 2c nên a = 4c
ta xét:a và b + c
a = 4c
b + c = 2c + c = 3c
4c > 3c nên a > b + c (Trái với Định lý BĐT trong tam giác)
Vậy không tồn tại tam giác có độ dài 3 cạnh là a; b; c sao cho a = 2b; b = 2c
Tích mình đi, mình tích lại cho
a=2b;b=3c
Suy ra:a=2b=4c
b =2c
c =1c
áp dụng định lý pi-ta-go
Suy ra:42=12+22
Mà 42 không bằng 12+22
vậy ta có thể khẳng định không tồn tại tam giác có độ dài ba cạnh là a;b;c sao cho a=2b;b=2c
Chắc đề bài phải là \(a=\dfrac{3}{2}b\) và \(b=\dfrac{3}{2}c\) chứ em?
Chọn D
Gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c.
Ta có: 2 ( p 1 + p 2 + … + p m ) + m = 2 c . Trong đó mỗi mặt nào đó có số cạnh là 2 p i + 1 , i = 1 , … , m
Do đó m chia hết cho 2. Hơn nữa có ít nhất một mặt ngũ giác nên tổng số mặt lớn hơn 5, do đó, tổng số cạnh lớn hơn 9 và tổng số đỉnh lớn hơn 5.
Hình chóp có đáy là ngũ giác của tổng số mặt là một số chẵn.