Cho ∆ABC vuông tại A; cạnh AB bằng cạnh AC, H là trung điểm của BC
a) Chứng minh: ∆AHB = ∆AHC
b) Chứng minh: AH vuông góc với BC
c) Trên tia đối của tia AH lấy điểm E sao cho AE = BC, trên tia đối của tia CA lấy F sao cho CF = AB. Chứng minh BE = BF
d) Tính số đo góc EBF
a.Ta có: tam giác ABC là tam giác vuông cân tại A
BH=HC
B=C
Xét tam giác AHB và tam giác AHC ta có:
AH là cạnh chung
BH=HC
B=C
=>Tam giác AHB =tam giác AHC (c-g-c)
b.Theo câu a ta có:
BHA=CHA(2 góc tg ứng)
Mà BHA+CHA=180 độ(kề bù)
=>BHA=CHA=90 độ
=>AH vuông góc với BC