K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

Đáp án B

Trong (ABC), kẻ đường thẳng d đi qua M song song CI

d cắt AC tại H

Trong (SAB) kẻ đường thẳng x đi qua M và song song SI

X cắt SA tại J

⇒ (MHJ) là thiết diện cần tìm

Gọi tứ diện đều cạnh 2a ⇒ AI = a

Ta có AM = x và M J S I = A M A I  (MJ // SI theo cách dựng)

  A M A I = M H C I (MH // CI theo cách dựng)

J H S C = A H A C = A M A I

⇒ MJ = x a . 3 a   x 3

       MH = x a . 3 a  =  x 3

       JH = x a . 2 a = 2x

Chu vi thiết diện MHJ là: x 3 + x 3 + 2x = 2x ( 3  + 1 )

22 tháng 10 2017

Đáp án A

27 tháng 8 2018

Chọn B

5 tháng 1 2017

Đáp án B

15 tháng 3 2017

Đáp án B.

Trong A B C  kẻ  M P / / C I   P ∈ A C   . Trong   S A C kẻ P N / / S C   N ∈ S A .

⇒ M N P / / S I C ⇒ M N P ≡ α

Suy ra thiết diện giữa   α và tứ diện S.ABC là tam giác MNP.

Do S.ABC là tứ diện đều nên ta đặt  S A = S B = S C = S D = A B = B C = C A = 2 x

⇒ A I = x ; C I = 2 x 3 2 = x 3

Ta có  M P / / C I ⇒ M P C I = A P A C = A M A I = a x ⇒ M P = a x . x 3 = a 3

Tương tự ta có M N = a 3 .

Ta có N P S C = A P A C = a x ⇒ N P = a x . S C = a x .2 x = 2 a .

Chu vi tam giác MNP là  C = 2 a + a 3 + a 3 = 2 a 1 + 3   . Ta chọn B.

5 tháng 4 2017

18 tháng 10 2017

Chọn B.

 Phương pháp:

+) Với (P), (Q), (R) là 3 mặt phẳng phân biệt, có 

+) Chứng minh hai mặt phẳng song song:

Cách giải:

3 tháng 9 2017

Đáp án A

Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.

Khi đó thiết diện của mặt phẳng  với tứ diện là tam giác MED

Lại có: MD // SI ⇒ A M A I = M D S I

ME // IC ⇒ A M A I = M E I C

Do đó  M D S I = M E I C

Vì S.ABC là tứ diện đều nên SI = CI (hai đường trung tuyến trong hai tam giác đều có chung cạnh)

Suy ra MD = ME

Vậy tam giác MED cân tại M.

Đáp án B