cho hai đoạn thẳng ab và cd cắt nhau tại trung điểm o của mỗi đoạn thẳng ab chứng minh ac = ab ; ac//bd; ad= bc và ad // b. vẽ ca vông góc với ab h là tia đối của dh lấy điểm i sao cho oy=oh chứng minh di vông góc ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D O
Cách 1:Xét tứ giác ADBC có
AB và CD cắt nhau tại O là trung điểm của mỗi đường
=>ADBC là hình bình hành
=>AC//BD(đl)
Cách 2 Chứng minh được \(\Delta AOC=\Delta BOD\left(AO=OC;\widehat{AOC}=\widehat{BOD};OC=OD\right)\)
\(\Rightarrow\widehat{CAO}=\widehat{DBO}\)Hay \(\widehat{CAB}=\widehat{DBA}\)
Hai góc này ở vị trí so le trong bằng nhau
=> AC//BD
Xét Δ AOC và Δ BOD, ta có:
OA = OB ( Vì O là trung điểm của AB )
∠(AOC) =∠(BOD) (đối đỉnh)
OC = OD ( Vì O là trung điểm của CD)
Suy ra: ΔAOC = ΔBOD (c.g.c)
⇒∠A =∠B (hai góc tương ứng)
Vậy: AC // BD (vì có hai góc so le trong bằng nhau)
Ta có hình vẽ:
A B C D O
Xét Δ AOC và Δ BOD có:
OA = OB (gt)
AOC = BOD (đối đỉnh)
OC = OD (gt)
Do đó, Δ AOC = Δ BOD (c.g.c)
=> ACO = ODB (2 góc tương ứng)
Mà ACO và ODB là 2 góc so le trong nên AC // BD (đpcm)
Ta có hình vẽ sau:
O 1 2 A B C D
Xét ΔOAC và ΔOBD có:
OA = OB (gt)
\(\widehat{O_1}\) = \(\widehat{O_2}\) (2 góc đối đỉnh)
OC = OD (gt)
\(\Rightarrow\) ΔOAC = ΔOBD (c.g.c)
\(\Rightarrow\) \(\widehat{C}\) = \(\widehat{D}\) (2 góc tương ứng)
Mà 2 góc này lại ở vị trí so le trong nên
\(\Rightarrow\) AC // BD(đpcm)
a: Xét tứ giác ACBD có
O là trung điểm của đường chéo AB
O là trung điểm của đường chéo CD
Do đó: ACBD là hình bình hành
Suy ra: AC//DB và AC=DB
b: Ta có: ACBD là hình bình hành
nên AD//CB và AD=CB
A B C D O
Xét \(\Delta AOD\) và \(\Delta BOC\), ta có: AO = BO (vì O là trung điểm của AB); \(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh); OD = OC (vì O là trung điểm của CD)
\(\Rightarrow\Delta AOD=\Delta BOC\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAO}=\widehat{OBC}\) (2 góc tương ứng)
Mà hai góc này ở vị trí so le cho nên AC // BD.
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
A B C D O
Xét tam giác AOD và BOC có: AO = BO (vì O là trung điểm của AB) ; góc AOD = BOC (đối đỉnh) ; OD = OC (vì O là trung điểm của CD)
=> tam giác AOD = BOC (c - g - c)
=> góc DAO = OBC ( 2 góc tương ứng)
Mà hai góc này ở vị trí so le trong nên AC // BD
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC