K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 5 2019

\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) \(\Rightarrow xy+xz+yz=6\)

\(P=\sum\frac{\frac{1}{yz}}{\frac{1}{x^3}\left(\frac{1}{z}+\frac{2}{y}\right)}=\sum\frac{x^3}{y+2z}=\sum\frac{x^4}{xy+2xz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+xz+yz\right)}\ge\frac{\left(xy+xz+yz\right)^2}{3\left(xy+xz+yz\right)}=2\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt{2}}\)

5 tháng 2 2016

ta có (a+b)(b+c)(c+a)+abc

=(a+b)(bc+ab+c^2+ca)+abc

=(a+b)(bc+ab+ca+c^2)+abc

=(a+b).c^2+abc

=ac^2+bc^2+abc

=c(ac+bc+ab)=c.0=0 (đpcm)

11 tháng 10 2019

Ta có: AB → = (−a; b; 0) và  AC →  = (−a; 0; c)

Vì  AB → .  AC →  = a 2 > 0 nên góc BAC là góc nhọn.

Lập luận tương tự ta chứng minh được các góc  ∠ B và  ∠ C cũng là góc nhọn.

9 tháng 6 2019

Chọn đáp án B.

Phương trình mặt phẳng (ABC) là 

4 tháng 10 2019

1 tháng 1 2023

*bạn kí tự vecto vào bài nhé 

Gọi trọng tâm tam giác ABC là G 

Ta có \(2GB+3GC=2\left(GM+MB\right)+3\left(GM+MC\right)=5GM+2MB+3MC=5GM\)

tượng tự \(2GC+3GA=5GN\)

\(2GA+3GB=5GP\)

cộng vế với vế ta được 

\(GA+GB+BC=GN+GM+GP\Leftrightarrow GN+GM+GP=0\)

Vậy G là trọng tâm tam giác MNP