K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(MN=\sqrt{9^2+12^2}=15\left(cm\right)\)

9 tháng 3 2022

MN=15cm

6 tháng 10 2021

Xét tam giác MNP vuông góc tại M:
- áp dụng định lí Pytago ta có
  NP2=MN2+MP2
=> NP2=92+122
=> NP2=225
=> NP=15cm
xét tam giác MNP vuông góc tại M có MQ là đường trung tuyến
=>MQ=1/2NP=1/2.15=7,5(cm)
 

6 tháng 10 2021

Xét tam giác MNP vuông tại M:

\(NP^2=MN^2+MP^2\left(pytago\right)\)

\(\Rightarrow NP^2=9^2+12^2=225\Rightarrow NP=15\left(cm\right)\)

Xét tam giác MNP vuông tại M có MQ là trung tuyến

\(\Rightarrow MQ=\dfrac{1}{2}NP=\dfrac{1}{2}.15=7,5\left(cm\right)\)

a: MP=12cm

b: Xét ΔNMD và ΔNED có 

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

Do đó:ΔNMD=ΔNED

Suy ra: DM=DE
hay ΔDME cân tại D

a: Ta có: ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(NP^2=9^2+12^2=225\)

=>\(NP=\sqrt{225}=15\left(cm\right)\)

Xét ΔMNP có MI là phân giác

nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)

=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)

=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)

mà IN+IP=NP=5cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)

=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)

 b: Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)

Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)

=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)

=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)

=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)

=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)

24 tháng 2 2021

\(MN+MP=34\)

\(MN-MP=14\)

\(\Rightarrow2MP=34-14=20\)

\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)

\(Pytago:\)

\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)

 

Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=10^2+24^2=676\)

hay NP=26(cm)

Vậy: MN=10cm; MP=24cm; NP=26cm

19 tháng 6 2017

Xin lỗi mình không biết làm!

14 tháng 2 2019

*Bn tự vẽ hình nha

a, Áp dụng đ/lý Py-ta-go vào tam giác vuông MHP ta cs

MH^2+ HP^2= MP^2

MH^2.           =MP^2-HP^2

MH^2            =20^2- 16^2

MH^2.           =400-256

MH^2            =144

=> MH=12cm

Áp dụng đ/lý Pytago vào tam giác vuông MHN ta cs

MN^2= NH^2+ MH^2

MN^2= 9^2 + 12^2

MN^2= 81+144

MN^2= 255

=>MN= 15cm

4 tháng 3 2023

mn giúp mk vs

 

MK là phân giác góc ngoài

=>KN/KP=MN/MP

=>KN/KN+8=9/15=3/5

=>5KN=3KN+24

=>KN=12cm