K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.

a: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

=>OB=OD

Ta có: OM=1/2OD

ON=1/2OB

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

Do đó: AMCN là hình bình hành

b: AMCN là hình bình hành

=>AM=CN và AM//CN và AN//CM và AN=CM

AM//CN

mà E thuộc tia đối của tia MA và F thuộc tia đối của tia NC

nên AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên DE=BF