Cho x, y thỏa mãn
\(7x^2+9y^2+12xy-4x-6y-15=0\)
Tìm Max; Min của S = 2x+3y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hướng dẫn thôi tự trình bày lại nhé
pt đầu bài \(\Leftrightarrow\)\(4x^2+9y^2+25+12xy+20x+30y=-3x^2+24x+36y+40\)
\(\Leftrightarrow\)\(\left(2x+3y+5\right)^2-12\left(2x+3y+5\right)+36=-3x^2+16\)
\(\Leftrightarrow\)\(\left(2x+3y-1\right)^2=-3x^2+16\le16\)
\(\Leftrightarrow\)\(-4\le2x+3y-1\le4\)\(\Leftrightarrow\)\(2\le2x+3y+5\le10\)
\(\Rightarrow\)\(\hept{\begin{cases}S_{min}=2\left(x=0;y=-1\right)\\S_{max}=10\left(x=0;y=\frac{5}{3}\right)\end{cases}}\)
a, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)
b,\(4x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
c,\(5x^2+9y^2-12xy+4x+4=0\)
\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)
\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)
d,\(5x^2+9y^2-6xy-4x+1=0\)
\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
\(4x^2-9xy-9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)
làm nốt