Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x > 0; y > 0 và 2x+3y < hoặc = 2. Tìm gtnn của biếu thức:
A =\(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)
\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)
Vì \(a>0,b>0\)
Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)
Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)
\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(P\ge4+52=56\)
\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)
1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)
\(minA=-1\Leftrightarrow x=-4\)
2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)
\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\)
\(A\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
hướng dẫn thôi tự trình bày lại nhé
pt đầu bài \(\Leftrightarrow\)\(4x^2+9y^2+25+12xy+20x+30y=-3x^2+24x+36y+40\)
\(\Leftrightarrow\)\(\left(2x+3y+5\right)^2-12\left(2x+3y+5\right)+36=-3x^2+16\)
\(\Leftrightarrow\)\(\left(2x+3y-1\right)^2=-3x^2+16\le16\)
\(\Leftrightarrow\)\(-4\le2x+3y-1\le4\)\(\Leftrightarrow\)\(2\le2x+3y+5\le10\)
\(\Rightarrow\)\(\hept{\begin{cases}S_{min}=2\left(x=0;y=-1\right)\\S_{max}=10\left(x=0;y=\frac{5}{3}\right)\end{cases}}\)