cho hình bình hành ABCD, qua A vẽ tia Ax cắt BD ở M, BC ở N và CD ở K.
a) so sánh MB/ND và MA/MK ; MB/MD và MN/MA
b) chứng minh rằng MA2 = MN.MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AMB đồng dạng với KMD ( góc góc ) cái này dễ bạn tự chứng minh được
suy ra \(\frac{MB}{MD}=\frac{AM}{KM}\) ( TÍCH CHẤT TAM GIÁC ĐỒNG DẠNG)
xét tam giác BMN động dạng với DMA ( góc góc )
suy ra \(\frac{BM}{DM}=\frac{NM}{MA}\) ĐIỀU CẦN PHẢI CHỨNG MINH
b) bạn xem lại câu 1 câu 2 rồi suy ra
từ 1 và 2 ta có
\(\frac{AM}{MK}=\frac{MN}{MA}=AM^2=MN.MK\) nhân chéo nó lên
a: Xét ΔAIB và ΔKID có
\(\widehat{AIB}=\widehat{KID}\)
\(\widehat{IAB}=\widehat{IKD}\)
Do đó: ΔAIB\(\sim\)ΔKID
Suy ra: IA/IK=IB/ID
Tứ giác ABCD là hình bình hành (gt).
\(\Rightarrow AB//DC;AD//BC\) (T/c hình bình hành).
Xét tam giác MKD và tam giác MAB:
\(\widehat{MKD}=\widehat{MAB}\left(AB//DC;K\in DC\right).\)
\(\widehat{KDM}=\widehat{ABM}\left(AB//DC;K\in DC\right).\)
\(\Rightarrow\Delta MKD\sim\Delta MAB\left(g-g\right).\)
Xét tam giác MAD và tam giác MNB:
\(\widehat{MAD}=\widehat{MNB}\left(AD//BC;N\in BC\right).\)
\(\widehat{ADM}=\widehat{NBM}\left(AD//BC;N\in BC\right).\)
\(\Rightarrow\Delta MAD\sim\Delta MNB\left(g-g\right).\)
Mk cx ko bt àm ạn ạ