Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình: Tự vẽ
+) Vì AB // DK, áp dụng hệ quả định lí Ta-let ta có: \(\frac{IK}{IA}=\frac{ID}{IB}\left(1\right)\)
Vì AD // BJ, áp dụng hệ quả định lí Ta-let ta có: \(\frac{ID}{IB}=\frac{AI}{\text{IJ}}\left(2\right)\)
Từ (1), (2) \(\Rightarrow\frac{IA}{\text{IJ}}=\frac{IK}{IA}\)
\(\Rightarrow IA^2=\text{IJ}.IK\left(\text{đ}pcm\right)\)
a. -Xét △AID: AD//BJ (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IA}{IJ}=\dfrac{ID}{IB}\) (định lí Ta-let). (1)
-Xét △AIB: AB//DK (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IK}{IA}=\dfrac{ID}{IB}\) (định lí Ta-let). (2)
-Từ (1), (2) suy ra: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) nên \(IA^2=IK.IJ\).
b. -Có: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) (cmt)
\(\Rightarrow\dfrac{IA+IJ}{IJ}=\dfrac{IK+IA}{IA}\)
\(\Rightarrow\dfrac{AJ}{IJ}=\dfrac{AK}{IA}\)
\(\Rightarrow\dfrac{AK}{IA}=\dfrac{AJ+AK}{IJ+IA}=\dfrac{AJ+AK}{AJ}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{AJ+AK}{AJ.AK}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{1}{AK}+\dfrac{1}{AJ}\)
a: Xét ΔAIB và ΔKID có
\(\widehat{AIB}=\widehat{KID}\)
\(\widehat{IAB}=\widehat{IKD}\)
Do đó: ΔAIB\(\sim\)ΔKID
Suy ra: IA/IK=IB/ID
xét tam giác AMB đồng dạng với KMD ( góc góc ) cái này dễ bạn tự chứng minh được
suy ra \(\frac{MB}{MD}=\frac{AM}{KM}\) ( TÍCH CHẤT TAM GIÁC ĐỒNG DẠNG)
xét tam giác BMN động dạng với DMA ( góc góc )
suy ra \(\frac{BM}{DM}=\frac{NM}{MA}\) ĐIỀU CẦN PHẢI CHỨNG MINH
b) bạn xem lại câu 1 câu 2 rồi suy ra
từ 1 và 2 ta có
\(\frac{AM}{MK}=\frac{MN}{MA}=AM^2=MN.MK\) nhân chéo nó lên