Cho tam giác ABC vuông tại A , vẽ trung điểm AM ( M thuộc BC ). Từ M vẽ AH vuông góc AB, AK vuông góc AC ( H thuộc AB; K thuộc AC )
a) Tứ giác AHMK là hình gì ?.
b) cho AB= 6cm , AC = 8cm .Tính diện tích tam giác ABC.
c) Gọi N là điểm đối xứng với M qua H.Tính diện tích tứ giác AMBN.
a: Sửa đề: vẽ MH\(\perp\)AB, MK\(\perp\)AC
Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
=>AHMK là hình chữ nhật
b: Vì ΔABC vuông tại A
nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
\(=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)