K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

a, xét tam giác ABH và tam giác ACH có AH chung

góc AHC = góc AHB = 90 

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABH = tam giác ACH (ch-cgv)

b, ta giác ABH = tam giác ACH (câu a)

=> HB = HC (đn)

xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90

góc ABC = góc ACB do tam giác ABC cân tại A  (gt)

=> tam giác BHF = tam giác CHE (ch-gn)

=> BF = CE (đn)

AB = AC (câu a)

BF + FA = AB

CE + AE = AC

=> FA = AE

=> tam giác AFE cân tại  A (đn)

c, tam giác AFE cân tại A (Câu b)

=> góc AFE = (180 - góc BAC) : 2 (tc)

tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)

=> góc AFE = góc ABC mà 2 góc này đồng vị

=> FE // BC (định lí)

17 tháng 3 2022

a, tam giac ABC can tai A (gt) => AB = AC va goc ABC = goc ACB (dn)

xet tamgiac ABH va tam giac ACH co : BH = HC do H la trung diem cua BC (gt)

=> tam giac ABH = tam giac ACH (c - g - c)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `BAH` và Tam giác `CAH` có:

`AB = AC (CMT)`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`HB = HC ( H` là trung điểm của `BC)`

`=> \text {Tam giác BAH = Tam giác CAH (c-g-c)}`

`->`\(\widehat{BAH}=\widehat{CAH} (\text {2 góc tương ứng})\)

`b,` Xét Tam giác `HEA` và Tam giác `BDA` có:

`AH` chung

\(\widehat{EAH}=\widehat{DAH} (a)\)

\(\widehat{HEA}=\widehat{HDA}=90^0\)

`=> \text {Tam giác HEA = Tam giác BDA (ch-gn)}`

`-> HE = HD (\text {2 cạnh tương ứng})`

`\text {Xét Tam giác HDE: HD = HE} -> \text {Tam giác HDE cân tại H}`

loading...

26 tháng 2 2022

bạn ơi mờ quá

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

29 tháng 8 2023

câu a là trứng minh tam giac abe và hbe nhé

 

 

\

 

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó; ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

Do đó: E là trực tâm

=>BE vuông góc KC

a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHDB=ΔHEC

b: Ta có: ΔHDB=ΔHEC

nên BD=EC

Ta có: AD+DB=AB

AE+EC=AC

mà BD=CE

và AB=AC

nên AD=AE

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến