K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Áp dụng định lí Pythagoras, ta có:

\(DE^2+DF^2=EF^2\\ DF^2=10^2-6^2\\ DF^2=100-36\\ DF^2=64\\ \Rightarrow DF=8\left(cm\right)\)

22 tháng 12 2021

Theo định lý pitago ta có DE^2 + DF^2 = EF^2

=> 36 + DF^2 = 100

=> DF^2 = 100 - 36

=> DF^2 = 64

=> DF = 8

 

a: Trực tâm là điểm D

b: EF=căn 3^2+4^2=5cm

c: DF=căn 10^2-6^2=8cm

22 tháng 10 2021

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

\(DH=15\left(cm\right)\)

\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

\(OH=3\sqrt{15}\left(cm\right)\)

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

\(C_{DAB}=\dfrac{1}{2}C_{DFE}=\dfrac{1}{2}\cdot30=15\left(cm\right)\)

4 tháng 11 2021

Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)

Vì A,B là trung điểm DE,DF nên AB là đtb tg DEF

Do đó \(AB=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right);AD=\dfrac{1}{2}DE=\dfrac{5}{2}\left(cm\right);BD=\dfrac{1}{2}DF=6\left(cm\right)\)

Vậy \(P_{DAB}=AB+BD+DA=\dfrac{13}{2}+\dfrac{5}{2}+6=15\left(cm\right)\)

\(C_{DAB}=\dfrac{1}{2}C_{DEF}=\dfrac{1}{2}\cdot26\left(cm\right)=13\left(cm\right)\)

21 tháng 9 2023

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

22 tháng 10 2021

\(\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\Leftrightarrow DF=\dfrac{4}{5}EF\)

\(\Leftrightarrow DF=24\left(cm\right)\)

\(\Leftrightarrow FE=30\left(cm\right)\)

\(\Leftrightarrow DI=14.4\left(cm\right)\)