K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =xy(1/3+4-2)=7/3xy

b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2

c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2

d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

Bài 3:

a: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

b: =>(x-1)(x+2)=0

=>x=1 hoặc x=-2

d: =>2x+3=0

hay x=-3/2

8 tháng 8 2019

a) \(2\left(x-y\right)+x^2-y^2\\ =2\left(x-y\right)+\left(x^2-y^2\right)\\ =2\left(x-y\right)+\left(x+y\right)\left(x-y\right)\\ =\left(x-y\right)\left(2+x-y\right)\)

b) \(x^3-4x^2-9x+36\\ =x^2\cdot x-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\=\left(x-4\right)\left(x^2-9\right)\\ =\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

c) \(2x^2+2y^2-x^2z+2-y^2z-2\\ =2\left(x^2+y^2\right)-z\left(x^2+y^2\right)+\left(2-2\right)\\ =\left(x^2+y^2\right)\left(2-z\right)\)

d) \(x^3+y^3+2x^2-2xy+2y^2\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\\ =\left(x^2-xy+y^2\right)\left(x+y+2\right)\)

e) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\\ =x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\\ =xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy+xz+yz\right)\\ =\left(y+z\right)\left(z+x\right)\left(x+y\right)\)

11 tháng 8 2019

Câu a kq lầ (x-y)(2+x+y) chứ

31 tháng 8 2016

Bạn phải bấm rõ mình mới giúp dc, nhìn vào ko hỉu lắm

31 tháng 8 2016

OK

ok

2 tháng 11 2017

1)   Áp dụng Cô-si ta có:

\(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\left(đpcm\right)\)

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn