K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

Do đó: \(AH\cdot BC=AB\cdot AC\)

23 tháng 3 2020

A B C H 10 6

+) Xét tam giác ABC vuông tại A có AH là đường cao => AH là đường trung tuyến của tam giác ABC

=> AH=BH=CH=\(\frac{1}{2}BC\)=6 cm

=> BC=12cm

+) Xét tam giác ABC vuông tại A theo định lí pitago có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow10^2+AC^2=12^2\Leftrightarrow AC=\sqrt{44}\)

Vậy AC=\(\sqrt{44}\)

chúc bn học tốt!

Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD(gt)

Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

HA=HD(gt)

Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔCAB và ΔCDB có 

CA=CD(cmt)

CB chung

BA=BD(cmt)

Do đó: ΔCAB=ΔCDB(c-c-c)

Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)

hay \(\widehat{CDB}=90^0\)(đpcm)

11 tháng 7 2021

Xét tam giác ACH và tam giác DCH có:

H=90o(gt)

CH chung(gt)

AH=HD(gt)

=> 2 tam giác = nhau(2 cạnh gv)

=> C1=C2 (2 góc tương ứng)

=> CA=CD( 2 cạnh tương ứng)

Xét tam giác ACB và tam giác CDB có:

C1=C2(cmt)

CA=CD (cmt)

CB chung(gt)

=> 2 tam giác= nhau( cgc)

=> A=D=90o(2 cạnh tương ứng)

tick mk nhé

2 tháng 5 2018

giup nhanh nhe

Xét ΔABH có BI là phân giác

nên IA/IH=BA/BH(1)

Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=AC/HA(2)

Từ (1) và (2) suy ra IA/IH=AC/HA

5 tháng 9 2017

- Bạn ơi D ở đâu thế?

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o