K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

tổng số số hạng của dãy là: \(\left(\left(2n-1\right)^2-12\right):20+1\)chia 20 vì mỗi phần tử cách nhau 20 đơn vị

tổng của dãy : \(\frac{\left(\left(\left(2n-1\right)^2-12\right):20+1\right)\times\left(\left(2n-1\right)^2+12\right)}{2}\)

bài b tương tự ạ

uses crt;

var i,n,s:longint;

begin

clrscr;

readln(n);

s:=0;

for i:=1 to n do 

  s:=s+sqr((2*i-1));

writeln(s);

readln;

end.

10 tháng 9 2017

Đặt vế trái bằng S n

Với n = 1 vế trái chỉ có một số hạng bằng 1, vế phải bằng 1

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11 với k ≥ 1. Ta phải chứng minh

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, ta có

S k   +   1   =   S k   +   2 k   +   1   -   1 2   =   S k   +   2 k   +   1 2

Giải sách bài tập Toán 11 | Giải sbt Toán 11

5 tháng 12 2021

\(1,=15+37+52-17-37=50\)

\(2,=21-32+12-32=-40\)

5 tháng 12 2021

\(\text{1.(15+37)+(52-17-37)}\\ =15+37+52-17-37\\ =\left(15+52-17\right)+\left(37-37\right)\\ =50+0=50\)

\(\text{2.(21-32)-(-12+32)}\\ =21-32+12-32\\ =\left(21+12\right)+\left(-32-32\right)\\ =33+-64=-31\)

10 tháng 2 2016

123

duyệt đi

61000

-1400000

2600

Cách làm là...........bấm máy tính hjhj

2 tháng 11 2021

Bài 1:

1) \(9A=3^3+3^5+...+3^{113}\)

\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)

\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)

2) \(9B=3^4+3^6+...+3^{202}\)

\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)

\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)

3) \(25C=5^3+5^5+...+5^{101}\)

\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)

\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)

4) \(25D=5^4+5^6+...+5^{102}\)

\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)

\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)

2 tháng 11 2021

Bài 2:

a) Gọi d là UCLN(2n+1,n+1)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)

Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản

b) Gọi d là UCLN(2n+3,3n+4)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản

17 tháng 2 2020

Máy tính đâu,nó sinh ra là để làm gì???

17 tháng 2 2020

.....

19 tháng 6 2023

\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)

Gọi 1+2+3+...+10 là P

Số số hạng là: (10 - 1) : 1 +1 = 10 (số)

P = (10+1) . 10 : 2 = 55 

P = 55

Gọi \(1\cdot2+2\cdot3+....+9\cdot10\)  là C

\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)

\(=>A=P+C\\ =>A=55+330\\ A=385\)

b)

\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)

\(\left(1+2^2+3^2+....+10^2\right)=A\)

\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)