K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Ta thấy \(10^{1993}+1>10^{1992}+1\)

\(\Rightarrow B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10.\left(10^{1992}+1\right)}{10.\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

\(\Rightarrow A< B\)

27 tháng 4 2017

\(\frac{10^{1993}+1}{10^{1992}+1}>1\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)

\(\frac{10^{1993+1}}{10^{1992}+1}>\frac{10^{1993}+10}{10^{1992}+10}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)

25 tháng 4 2019

Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)

\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Tự so sánh được rồi -_-

25 tháng 4 2019

sao ra được 1+ gì gì đó vậy bạn

2 tháng 5 2015

Ta có:

\(A=\left(\frac{10^{1990}+1}{10^{1991}+1}\right).\frac{10}{10}=\frac{10^{1991}+10}{10^{1992}+10}\)

Mình làm bằng cách tính phần bù:

Ta có:

\(1-A=1-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}+10}{10^{1992}+10}-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}-10^{1991}}{10^{1992}+10}\)

\(1-B=1-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}+1}{10^{1992}+1}-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)

Vì \(\frac{10^{1992}-10^{1991}}{10^{1992}+10}<\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)nên\(\frac{10^{1991}+10}{10^{1992}+10}>\frac{10^{1991}+1}{10^{1992}+1}\)

\(\Rightarrow A>B\)

2 tháng 5 2015

\(\frac{10^{1991}+1}{10^{1992}+1}\)<1

Nên\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Ta có: \(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\frac{10^{1991}+10}{10^{1992}+10}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+1}\)

=>\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+1}\)

Vậy: B<A

18 tháng 7 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)

=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)

=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)

=> B < A

18 tháng 7 2016

Bài này mình biết làm nè , nhưng ... dài dòng lắm 

27 tháng 11 2016

\(\Rightarrow\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-9}{10^{1992}+10}=1-\frac{9}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-9}{10^{1993}+10}=1-\frac{9}{10\left(10^{1992}+1\right)}\)

Vì \(1-\frac{9}{10\left(10^{1991}+1\right)}< 1-\frac{9}{10\left(10^{1992}+1\right)}\Rightarrow A< B\)

27 tháng 11 2016

So sánh tử và mẫu của 2 phân số với nhau.

11 tháng 5 2017

Ta có : 

A = \(\frac{10^{1990}+1}{10^{1991}+1}\)

10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)

10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)

10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)

10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)

Ta  lại có :

B = \(\frac{10^{1991}+1}{10^{1992}+1}\)

10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)

10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)

10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)

10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)

Từ \(\left(1\right)va\left(2\right)\)

Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\)10A > 10B 

\(\Rightarrow\)A > B 

11 tháng 5 2017

A > B nha

\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)

Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)

\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

\(=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow B< A\)

20 tháng 4 2017

Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)

\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)

\(=>10A=1+\frac{9}{10^{1991}+1}\)

Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)

Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)

Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)

\(=>A>B\)

20 tháng 4 2017

A < B

Chắc thế

:)

:)

22 tháng 10 2017

Ta có :

\(A=\frac{10^{1992}+1}{10^{1991}+1}\)

\(\Rightarrow\frac{1}{10}A=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-11}{10^{1992}+10}=1-\frac{11}{10^{1992}+10}\)

\(B=\frac{10^{1993}+1}{10^{1992}+1}\)

\(\Rightarrow\frac{1}{10}B=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-11}{10^{1993}+10}=1-\frac{11}{10^{1993}+10}\)

Mà \(10^{1993}+10>10^{1992}+10\)

\(\Rightarrow\frac{11}{10^{1993}+10}< \frac{11}{10^{1992}+10}\)

\(\Rightarrow1-\frac{11}{10^{1993}+10}>1-\frac{11}{10^{1992}+10}\)

\(\Leftrightarrow\frac{1}{10}B>\frac{1}{10}A\)

\(\Rightarrow B>A\)

22 tháng 10 2017

B > A k minh di co gi vao kb roi minh giai ki cho

11 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~