Cho ∠xOy = 90o, một điểm A cố định nằm trên tia Oy; B thuộc Ox sao cho OA = OB; M là điểm ϵ tia Bx; từ B kẻ đường thẳng ⊥ OB cắt AM tại I, gọi H là hình chiếu của I trên OA, từ A kẻ đường thẳng ⊥ AM cắt trục Ox tại K.
a) Chứng minh AK = AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\overrightarrow{u},\overrightarrow{v}\) theo thứ tự là vec tơ chỉ phương đơn vị của các tia Ox, Oy, tương ứng cùng hướng với các tia Ox, Oy gọi I là tâm của \(\omega\). Chọn O làm gốc vec tơ điểm và với mỗi điểm X của mặt phẳng, ký hiệu \(\overrightarrow{x}\) để chỉ vec tơ \(\overrightarrow{OX}\). Trung trực OA cắt các đường thẳng \(d_1,d_2\) theo thứ tự tại B, C.
Khi đó B, C cố định và do I nằm trên đường thẳng BC nên \(\overrightarrow{i}=\alpha\overrightarrow{b}+\left(1-\alpha\right)\overrightarrow{c}\)
Mặt khác , theo định lí chiếu ta có :
\(\overrightarrow{m}=2\left(\overrightarrow{i}.\overrightarrow{u}\right).\overrightarrow{u}\) và \(\overrightarrow{n}=2\left(\overrightarrow{i}.\overrightarrow{v}\right).\overrightarrow{v}\)
Gọi P là trung điểm MN. Suy ra \(2\overrightarrow{p}=\overrightarrow{m}.\overrightarrow{n}\). Bởi vậy, với \(b=OB,c=OC\) và \(t=\cos<\left(\overrightarrow{u}\overrightarrow{v}\right)\) thì b, c, t là các hằng số và :
\(\overrightarrow{p}=\left[\alpha.\overrightarrow{b}\overrightarrow{u}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{u}\right].\overrightarrow{u}+\left[\alpha.\overrightarrow{b}\overrightarrow{v}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{v}\right].\overrightarrow{v}\)
\(=\alpha.b\left(\overrightarrow{u}+t\overrightarrow{v}\right)+\left(1-\alpha\right).c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\)
\(=\alpha\overrightarrow{x}+\left(1-\alpha\right)\overrightarrow{y}\)
Trong đó \(\overrightarrow{x}=\overrightarrow{OX}=b\left(\overrightarrow{u}+t\overrightarrow{v}\right)\) và \(\overrightarrow{y}=\overrightarrow{OY}=c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\) là các vec tơ cố định
Suy ra P luôn nằm trên đường thẳng XY cố định khi \(\omega\) thay đổi
2 1 O x z y N M I M'
Trên tia Oy lấy điểm M' sao cho OM' = m thì NM' = OM
Vẽ tia phân giác Oz của góc xOy ,vẽ đường trung trực của OM' cắt Oz ở I,ta có : IO = IM',\(\Delta OIM'\)cân ở I,do đó \(\widehat{M'}=\widehat{O_1}\)mà \(\widehat{O}_1=\widehat{O}_2\)nên \(\widehat{M'}=\widehat{M}_2\)
Xét \(\Delta IOM\)và \(\Delta IM'N\)có :
IM = IM'
OM = MN
\(\widehat{I}\)chung
=> \(\Delta IOM=\Delta IM'N\left(c-g-c\right)\)
=> IM = IN
=> I thuộc đường trung trực của MN.
Vì góc xOy cố định Oz cố định \(M'\in Oy\)mà OM' = m không đổi thì đường trung trực của đoạn MN luôn luôn đi qua điểm I cố định.
Vậy khi hai điểm M và N thay đổi trên Ox,Oy sao cho OM + ON = m không đổi thì đường trung trực của đoạn MN luôn luôn đi qua điểm I cố định.