Cho tứ giác ABCD có góc A = 125 độ ; B = 55 độ
cm : 2 dường p/g của góc D và C vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng 4 góc trong 1 tứ giác là 360 độ nên góc A + góc B + góc BCD + góc ADC = 360 độ
125 độ + 55 độ + góc BCD + góc ADC = 360 độ
góc BCD + góc ADC = 180 độ
Gọi giao điểm 2 đường p/g của góc D và C là O
CO là tia phân giác của góc BCD (gt) nên góc OCD = 1/2 góc BCD
DO là tia phân giác của góc BDC (gt) nên góc ODC = 1/2 góc ADC
Áp dụng định lí tổng 3 góc trong 1 tam giác vào tam giác OCD, ta có:
góc OCD+ góc ODC + góc DOC =180 độ
1/2 ( góc BCD + góc ADC) + góc DOC = 180 độ
1/2 . 180 độ + góc DOC = 180 độ
90 độ + góc DOC = 180 độ
góc DOC = 90 độ
Vậy 2 đường phân giác của góc D và C vuông góc với nhau.
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
Tứ giác ABCD có :
\(\widehat{A}+\widehat{C}=50+130=180^o\)
\(\widehat{B}+\widehat{D}=60+120=180^o\)
Vậy tứ giác ABCD là hình thang
Gọi giao điểm của hai đường phân giác góc D và C là M
góc ADC+góc BCD=360-125-55=180 độ
=>góc MDC+góc MCD=180/2=90 độ
=>MD vuông góc với MC