Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, với AB=BC=a ; AD=2a. Các mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy ( ABCD). Biết góc giữa hai mặt phẳng ( SAB) và ( ABCD) bằng 60 độ. Tính thể tích khối chóp và khoảng cách giữa hai đường thẳng CD và SB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Diện tích hình thang ABCD là:
S A B C D = A B . A D + B C 2 = 5
Vậy thể tích khối chóp S.ABCD là:
V = 1 3 . S A . S A B C D = 1 3 . S A . S A B C D = 1 3 .2.5 = 10 3 (đvtt)
Đáp án B
S I C D = S A B C D − S A I D − S B I C = 3 a 2 − a 2 − a 2 2 = 3 a 2 2 ; C D = 2 a 2 + a 2 = a 5
Gọi K, H lần lượt là hình chiếu của I lên CD và SK
⇒ I H ⊥ S C D ⇒ I H = d I ; S C D = 3 a 2 4
S Δ I C D = 1 2 I K . C D ⇒ I K = 2 S I C D C D = 3 a 2 a 5 = 3 a 5
1 I H 2 = 1 I K 2 + 1 I S 2 ⇒ 1 I S 2 = 8 9 a 2 − 5 9 a 2 = 1 3 a 2 ⇒ I S = a 3
⇒ V S . A B C D = 1 3 .3 a 2 . a 3 = a 3 3
Đáp án D
Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:
(SKH) ⊥ BD => Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600
Lại có:
Do đó
Vậy
Chọn D
Ta có
Gọi H là trung điểm AB thì ,
kẻ , ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có: