Cho \(\Delta\) ABC có AB=c; AC=b góc A \(=\alpha\) \((0< \alpha< 90)\) . Tính S\(\Delta ABC\) theo b, c và \(\alpha\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, * Ta có: \(AF=AB+BF\)
Và: ___ \(AC=AE+EC\)
Mà: \(AB=AE\left(gt\right)\)
Và: \(AF=AC\left(gt\right)\)
\(\Rightarrow BF=EC\)
* Xét \(\Delta ABD\) và \(\Delta AED\) có:
\(AB=AE\left(gt\right)\)
\(\widehat{BAD}=\widehat{EAD}\) ( AD là đường trung tuyến của \(\widehat{A}\) )
\(AD\) là cạnh chung
\(\Rightarrow\Delta ABD=\Delta AED\left(c-g-c\right)\)
* Tương tự ta xét \(\Delta AFD=\Delta ACD\left(c-g-c\right)\)
\(\Rightarrow FD=CD\) (2 cạnh tương ứng)
* Xét \(\Delta BDF\) và \(\Delta EDC\) có:
\(BD=ED\) (2 cạnh tương ứng)
\(\widehat{BDF}=\widehat{EDC}\left(đ/đỉnh\right)\)
\(FD=CD\) (2 cạnh tương ứng)
\(\Rightarrow\Delta BDF=\Delta EDC\left(c-g-c\right)\left(đpcm\right)\)
b, Ta có: \(BF=EC\left(cmt\right)\) (Cái này mik chứng minh ở câu a rồi nhé)
c, Ta có: \(AF=AC\left(gt\right)\)
\(\Rightarrow\Delta AFC\) cân tại \(A\)
Trong tam giác cân đường phân giác cũng là đương cao.
\(\Rightarrow AD\perp FC\left(đpcm\right)\)
a/ Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAH}=\widehat{CAH}\) (AH phân giác \(\widehat{A}\) )
AH cạnh chung
Vậy \(\Delta ABH=\Delta ACH\left(cgc\right)\)
b/ Ta có: \(\widehat{AHB}=\widehat{AHC}\left(\Delta ABH=\Delta ACH\right)\)
mà \(\widehat{AHB}+\widehat{AHC}=180^o\) (kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
c/ Gọi I là giao điểm của AH và DE.
Xét \(\Delta\) vuông BDH và \(\Delta\) vuông CEH có:
\(\widehat{B}=\widehat{C}\left(\Delta ABH=\Delta ACH\right)\\ BH=CH\left(\Delta ABH=\Delta ACH\right)\)
Vậy \(\Delta\) vuông BDH = \(\Delta\) vuông CEH (ch-gn )
\(\Rightarrow BD=CE\) (cạnh tương ứng )
Ta có:
\(AD=AB-BD\left(D\in AB\right)\\ AE=AC-CE\left(E\in AC\right)\)
mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow AD=AE\)
Xét \(\Delta AID\) và \(\Delta AIE\) có:
\(AD=AE\left(cmt\right)\)
\(\widehat{DAH}=\widehat{EAH}\) (AD phân giác \(\widehat{A}\) )
AI cạnh chung
Vậy \(\Delta AID=\Delta AIE\left(cgc\right)\)
\(\Rightarrow\widehat{AID}=\widehat{AIE}\) (góc tương ứng )
mà \(\widehat{AID}+\widehat{AIE}=180^O\) (kề bù )
\(\Rightarrow\widehat{AID}=\widehat{AIE}=\dfrac{180^O}{2}=90^O\\ \Rightarrow AH\perp ED\)
mà:
\(AH\perp BC\left(cmt\right)\\ \Rightarrow ED//BC\)
Chúc bạn học tốt
B A C D F H E
Xét \(\Delta DFA\)và \(\Delta DAE\). Có
AD cạnh chung
AF = AE (gt);
góc DAF = góc DAE (gt)
\(\Rightarrow\) \(\Delta DFA=\Delta DAE\left(c.g.c\right)\)
\(\Rightarrow\) DF = DE (Hai cạnh tương ứng)
Các bạn giúp mình nhanh nha thứ bảy mình kiểm tra rồi.
Mình hứa tích cho ba người đầu tiên.
Câu 1 :
A B C H K
a) Xét \(\Delta AHC,\Delta KHC\) có:
\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)
\(CH:Chung\)
\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))
=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)
b) Từ (*) suy ra :
\(AC=CK\) (2 cạnh tương ứng)
Xét \(\Delta AKC\) có :
\(AC=CK\left(cmt\right)\)
=> \(\Delta AKC\) cân tại A (đpcm)
D E F 10 24 26
Xét \(\Delta DEF\) có :
\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)
=> \(DF^2=26^2-10^2\)
=> \(DF^2=576^{ }\)
=> \(DF=\sqrt{576}=24\)
Mà theo bài ra : \(DF=24\left(cm\right)\)
Do đó , \(\Delta DEF\) là tam giác vuông
Lời giải:
Kẻ đường cao $BH$ của tam giác $ABC$.
\(S_{ABC}=\frac{BH.AC}{2}(1)\)
Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)
Hình vẽ: