K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ

phần a cậu có thể tự làm :))

b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:

AB=AE(gt)

BD(chung)

góc B1 = góc B2

=> \(\Delta\)ABD=\(\Delta\)EBD

=> AD=DE

=>\(\Delta\)ADE cân tại D(2)

Mà BD là tia pg(1)

Từ (1) và (2) => BD là đường cao của tam giác ABC

=> BD\(\perp\) AE

~Hok tốt~

               

\(\Delta\)

À ừ :vv tớ giải all lại nek

a) \(\Delta\)ABC là tam giác vuông

b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:

AB=BE(gt)

BD(chung)

Góc B1=góc B2

=>\(\Delta\)ABD=\(\Delta\)EBD

=>AD= ED

=>\(\Delta\)ADE cân tại D(1)

Mà BD là tí pg của góc B(2)

Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC

=>BD\(\perp\)AE

d) Ta có: BD\(\perp\) FC

               AE\(\perp\)BC

Mà D là trực tâm 

=> AE // FC

~Hok tốt :^~

               

16 tháng 2 2019

giải

a, Trong tam giác ABC có: AB= 3cm( gt)

AC= 4cm ( gt)

BC = 5cm ( gt)

=> BC>AC>AB

==> Góc A > góc B > góc C ( quan hệ giữa góc và cạnh đối diện trong 1 tam giác)

b, Xét tam giác ABC có:

AB\(^2\)+ AC\(^2\)=3\(^2\)+4\(^2\)=25

BC\(^2\)=5\(^2\)= 25

==> AB\(^2\)+AC\(^2\)=BC\(^2\)

===> tam giác ABC là tam giác vuông ( vuông tại A) ( ĐL Py-ta-go đảo)

13 tháng 2 2019

gọi cạnh AF là x,BC là y

ta có AB=AE+EB=3+6=9cm;

theo định lý Ta Lét đảo ,ta có :

AE/EB=AF/FC hay 3/6 = x/5

<=>3.5=6.x<=>15=6.x<=> x=2,5

=> AC =AF+FC=2,5+5=7,5cm

mặc khác ta có:

AE/AB=EF/BC hay 3/6=8/y

<=>3.y=6.8<=>3.y=48<=>y=16

=>BC=16cm

18 tháng 1 2019

Áp dụng địa lí Pi-ta-go đảo ta có AB2+ BC2= AC2

22+ BC2 = 32

4+ BC2 =9

BC2 =9-4

BC= căn 5

18 tháng 1 2019

tớ không biết đánh dấu căn

7 tháng 5 2019

a.△ABC có AD là phân giác \( \widehat{BAC}\) (gt)

\(\frac{BD}{CD}=\frac{AB}{AC}\)

\(\frac{BD}{CD+BC}=\frac{AB}{AB+AC}\)

hay \(\frac{BD}{CD}=\frac{3}{3+4,5}\)

\(\frac{BD}{5}=\frac{3}{7,5}\)

\(BD=\frac{3.5}{7,5}=\frac{15}{7,5}=2\)cm

Có: BC=BD+DC

hay 5=2+DC

⇒DC=3cm

3 tháng 12 2017

ta có : \(AB^2+AC^2=3^2+4^2=25\left(cm\right)\)

\(BC^2=5^2=25\left(cm\right)\)

=> \(AB^2+AC^2=BC^2\left(pytago\right)\)

Suy ra tam giác Abc là tam giác vuông tại A

=> góc A = 90\(^0\)

ta có : sinB=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)

=> góc B\(\approx53^08^`\)

=> góc C =90\(^0-gócB\approx90^0-53^08^`=36^052^`\)

21 tháng 4 2018

a) \(AC^2=BC^2-AB^2=5^2-3^2=4^2\)

\(\Rightarrow AC=4\left(cm\right)\)

Rồi mấy cạnh còn lại tự tính :P

b) Xét tam giác ABC và tam giác AHC ta có:

\(\widehat{BAC}=\widehat{AHC}\left(=1v\right)\)

\(\widehat{C}\) chung

\(\Rightarrow\Delta ABC\sim\Delta AHC\left(g.g\right)\)

c) \(HC.BC=AC^2\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)

\(\Rightarrow AH^2=AC^2-HC^2=4^2-3,2^2=5,76\)\(\Rightarrow AH=2,4\left(cm\right)\)

Rồi từ đây dễ dàng tính diện tích