K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

b: ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot IB=HI^2\)

ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot KC=HK^2\)

Xét tứ giác AIHK có 

\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

=>AIHK là hình chữ nhật

=>\(HI^2+HK^2=IK^2=AH^2\)

=>\(AI\cdot IB+AK\cdot KC=AH^2=7.2^2=51.84\)

c: Vì AIHK là hình chữ nhật

nên A,I,H,K cùng thuộc đường tròn đường kính AH

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó:ΔHBA\(\sim\)ΔABC

2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

9 tháng 5 2022

a, Xét Δ ABC và Δ CBH

Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)

            \(\widehat{ABC}=\widehat{CBH}\) (góc chung)

=> Δ ABC ∾ Δ CBH (g.g)

b, Ta có : Δ ABC ∾ Δ CBH (cmt)

=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)

=> \(BC^2=AB.BH\)

9 tháng 5 2022

c,

Ta có : AB = AH + HB

=> AB = 4 + 9

=> AB = 13 (cm)

Ta có : \(BC^2=AB.BH\left(cmt\right)\)

=> \(BC^2=13.9\)

=> \(BC^2=117\)

=> BC = 10,8 (cm)

Xét Δ ABC

Ta có : \(AB^2=AC^2+BC^2\)

=> \(13^2=AC^2+10,8^2\)

=> \(169=AC^2+116,64\)

=> \(169-116,64=AC^2\)

=> \(52,36=AC^2\)

=> AC = 7,2 (cm)

Xét Δ ABC vuông tại C

=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)

=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)

=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

Hình bạn tự vẽ nhé !

Xét tam giác ABC vuông tại A có đường cao AH

=> \(AB^2=BH.BC\) ( Hệ thức lượng trong tam giác vuông ) 

\(\Leftrightarrow BC=\frac{AB^2}{BH}=\frac{9^2}{5,4}=\frac{81}{5,4}=15\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=15-5,4=9,6\left(cm\right)\)

\(\Leftrightarrow AH^2=BH.CH\) ( Hệ thức lượng trong tam giác vuông )

\(\Leftrightarrow AH^2=5,4.9,6=51,84\Leftrightarrow AH=7,2\left(cm\right)\)

\(\Leftrightarrow AC^2=CH.BC\) ( Hệ thức lượng trong tam giác vuông ) 

\(\Leftrightarrow AC^2=15.9,6=144\Leftrightarrow AC=12\left(cm\right)\)

Đáp số : ...........

6 tháng 7 2022

$\begin{array}{l} {x^3} + a{x^2} + bx + c = \left( {x + 1} \right)P\left( x \right) + 2021\\ \Rightarrow P\left( { - 1} \right) = 2021 \Rightarrow - 1 + a - b + c = 2021\\ {x^3} + a{x^2} + bx + c = \left( {x - 2} \right)P\left( x \right) + 2030\\ \Rightarrow P\left( 2 \right) = 2030 \Rightarrow 8 + 4a + 2b + c = 2030 \end{array}$

$\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} 4a + 2b + c = 2022\\ a - b + c = 2022 \end{array} \right. \Rightarrow 4a + 2b + c = a - b + c\\ \Rightarrow 3a + 3b = 0 \Leftrightarrow a = - b\\ \Rightarrow K = \left( {{a^{2021}} + {b^{2021}}} \right)\left( {{a^{2022}} + {b^{2022}}} \right) = \left( {{a^{2021}} - {a^{2021}}} \right)\left( {{a^{2022}} + {b^{2022}}} \right)\\ = 0\left( {{a^{2022}} + {b^{2022}}} \right) = 0 \end{array}$

b) Đặt $n^2-n+5=k^2(k\in \mathbb Z)$

$\begin{array}{l} \Rightarrow 4{n^2} - 4n + 20 = 4{k^2}\\ \Rightarrow {\left( {2n - 1} \right)^2} + 19 = {\left( {2k} \right)^2}\\ \Rightarrow \left( {2k - 2n + 1} \right)\left( {2k + 2n - 1} \right) = 19 \end{array}$

$\begin{array}{l} k \in \mathbb Z,n \in \mathbb Z \to 2k - 2n + 1,2k + 2n - 1 \in \mathbb Z\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = 1\\ 2k + 2n - 1 = 19 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 2k = 2n\\ 2n + 2n = 20 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = \dfrac{{20}}{3}\\ n = \dfrac{{10}}{3} \end{array} \right.\left( L \right) \end{array}$

$\begin{array}{l} \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = - 1\\ 2k + 2n - 1 = - 19 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2k = 2n - 2\\ 2k + 2n = - 18 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = - 5\\ n = - 4 \end{array} \right.\left( {tm} \right)\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = 19\\ 2k + 2n - 1 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = 5\\ n = - 4 \end{array} \right.\left( {tm} \right)\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = - 19\\ 2k + 2n - 1 = - 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = - 5\\ n = 5 \end{array} \right.\left( {tm} \right) \end{array}$

Vậy $n=-4, n=5$ thỏa mãn yêu cầu bài toán.