Cho tam giác vuông ABC có 2 cạnh góc vuông AB = 4,5 cm; AC = 6 cm và cạnh huyền BC = 7,5 cm. Tính chiều cao AH của hình tam giác vuông ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cạnh AC dài \(10:\dfrac{1}{3}=30\left(cm\right)\)
Diện tích ABC là \(\dfrac{1}{2}\times30\times10=150\left(cm\right)\)
Câu 1:
A B C H
Ta có: \(S_{\Delta ABC}=\frac{1}{2}AB\times AC=\frac{1}{2}\times4,5\times5=13,5\)
Mặt khác: \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AH\times7,5=13,5\)
=> \(AH=3,6\)cm
Tổng độ dài hai cạnh AB và AC:
30 - 13 = 17 (cm)
Tổng số phần bằng nhau:
5 + 12 = 17 (phần)
Cạnh AB dài:
17 . 5 : 17 = 5 (cm)
Cạnh AC dài:
17 . 12 : 17 = 12 (cm)
Diện tích tam giác ABC:
5 . 12 : 2 = 30 (cm²)
Tổng độ dài 2 đáy AB và AC là :
30 - 13 = 17 ( cm )
Tổng số phần bằng nhau là
5 + 12 = 17 ( phần )
Cạnh AB dài là
17 : 17 x 5 = 5 ( cm )
Cạnh AC dài là :
17 - 5 = 12 ( cm )
Diện tích hình tam giác vuông ABC là
12 x 5 : 2 = 30 ( m2)
Đáp số : 30 m2
Giải
a. Xét \(\Delta ABC\) ta có :
\(AB^2+AC^2=\) \(6^2+4,5^2=56,25\) (cm)
\(BC^2=7,5^2=56,25\) (cm)
\(\Rightarrow\) \(\Delta ABC\) là tam giác vuông
b. - Áp dụng hệ thức về một số cạnh và đường cao trong tam giác vuông ta có :
AB.AC = BC.AH
\(\Leftrightarrow6.4,5=7,5.AH\)
\(\Leftrightarrow AH=\dfrac{6.4,5}{7,5}\)
\(\Leftrightarrow AH=3.6\) (cm)
- Trong \(\Delta ABH\perp H\) ta có :
sin B = \(\dfrac{AH}{AB}=\dfrac{3,6}{6}=0,6\)
\(\Rightarrow\) Góc B \(\approx\) \(37\) độ
\(\Rightarrow\) Góc C = 53 độ
Vậy AH = 3,6cm, góc B = 37 độ, góc C = 53 độ
Độ dài chiều cao AH là:
(4,5+6):2 = 5,25 (cm)
Đáp số: 5,25 cm
nhớ k cho mình nha. Yêu nhiều!