Cho hình thang ABCD (đáy AB, CD; AB<CD) .Gọi O là giao điểm hai đường chéo.Đường thẳng qua O và song song với 2 đáy cắt AD và BC lần lượt tại I và K. Chứng minh: a)\(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)
b)\(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{KI}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang cân ABCD có độ dài đáy AB=25cm,đáy CD ngắn hơn đáy AB 5 cm,độ dài cạnh AD bằng 1 nửa độ dài đáy của CD .Chu vi hình thang ABCD .
Cho hình thang cân abcd có đáy Ab=3cm đáy cd=5cm và cạnh bên aD=4cm tính chu vi hình thang cân abcd?
Vì ABCD là hình thang cân
=> AD = BC = 4cm
Chu vi hình thang cân ABCD là : 3+4+5+4=16 (cm)
Hạ CH và DK vuông góc với AB
Ta có:
A K = B H = 1 2 A D = 1 c m
Từ đó: CD = 2,5cm
C H = 3 c m
S A B C D = A B + C D . C D 2 = 7 3 2 c m 2
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Đáy bé của hình thang là :
18 : 100 * 30 = 5,4 [ cm ]
Chiều cao của hình thang là :
[ 18 + 5,4 ] : 2 = 11,7 [ cm ]
Diện tích hình thang ABCD là :
[ 5,4 + 18 ] * 11,7 : 2 = 136,89 [ cm2 ]
Đáp số : 136,89 cm2