Bài 4 : a ) 3 ; 4 ; 5 b ) 3 ; 4 ; 6 Thì tam giác nào là tam giác vuông ? Vì sao ? Bài 5 : Cho đơn thức B = -2xyx2x2 . (−12−12 xx3x3 yx5x5 ) . Hãy thu gọn đơn thức B sau đó xác định hệ số, phần biến và bậc của đơn thức kết quả
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
Bài 1:
a, 3\(\dfrac{2}{5}\) - \(\dfrac{1}{2}\)
= \(\dfrac{17}{5}\) - \(\dfrac{1}{2}\)
= \(\dfrac{34}{10}\) - \(\dfrac{5}{10}\)
= \(\dfrac{29}{10}\)
b, \(\dfrac{4}{5}\) + \(\dfrac{1}{5}\) x \(\dfrac{3}{4}\)
= \(\dfrac{4\times4}{5\times4}\) + \(\dfrac{1\times3}{5\times4}\)
= \(\dfrac{16}{20}\) + \(\dfrac{3}{20}\)
= \(\dfrac{19}{20}\)
c, 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
Bài 2:
3\(\dfrac{2}{5}\) + 2\(\dfrac{1}{5}\)
= \(\dfrac{17}{5}\) + \(\dfrac{11}{5}\)
= \(\dfrac{28}{5}\)
b, 7\(\dfrac{1}{6}\) : 5\(\dfrac{2}{3}\)
= \(\dfrac{43}{6}\) : \(\dfrac{17}{3}\)
= \(\dfrac{43}{34}\)
Bài 4:
a: xy=-2
=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)
=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
b: \(\left(x-1\right)\left(y+2\right)=-3\)
=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)
=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)
Bài 3:
a: \(x\left(x+9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b: \(\left(x-5\right)^2=9\)
=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)
c: \(\left(7-x\right)^2=-64\)
mà \(\left(7-x\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
Bài 2:
a: \(\left(-31\right)\cdot x=-93\)
=>\(31\cdot x=93\)
=>\(x=\dfrac{93}{31}=3\)
b: \(\left(-4\right)\cdot x=-20\)
=>\(4\cdot x=20\)
=>\(x=\dfrac{20}{4}=5\)
c: \(5x+1=-4\)
=>\(5x=-4-1=-5\)
=>\(x=-\dfrac{5}{5}=-1\)
d: \(-12x+1=-4\)
=>\(-12x=-4-1=-5\)
=>\(12x=5\)
=>\(x=\dfrac{5}{12}\)
Bài 1:
a) \(x.\dfrac{3}{4}=\dfrac{9}{14}\)
\(\Rightarrow x=\dfrac{9}{14}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{6}{7}\)
b) \(x:\dfrac{5}{9}=\dfrac{3}{10}\)
\(\Rightarrow x=\dfrac{3}{10}.\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{1}{6}\)
a) 3/4 + 1/4: x = -3
1/4: x = -3 - 3/4
1/4 : x = -15/4
x = 1/4 : -15/4
x = -1/15
Bài 3
a) x^3 = x^5 => x^5 - x^3 =0 => x^3( x^2 - 1 ) = 0
=> x^3(x - 1 ) ( x+ 1 )= 0
=> x^3 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = 1 hoặc x -1
tick đúng cho mình nha
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$
Bài 4
a: 3;4;5 là tam giác vuông vì \(5^2=3^2+4^2\)
Bài 5: bạn ghi lại đề đi bạn