cho hỏi: có bốn số nguyên a,b,c,d sao cho : 2b=a+c ; 2c=b+d và c^2+d^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2c=b+d và c^2+d^2 là sao? tức là 2c = luôn cả c^2+d^2 hả?
ta có : \(2b=a+c\Leftrightarrow b+b=a+c\Leftrightarrow b-a=c-b\)
\(2c=b+d\Leftrightarrow c+c=b+d\Leftrightarrow c-b=d-c\)
\(\Rightarrow b-a=d-c\)
vì \(a;b;c;d\inℤ\Rightarrow b-a;d-c\inℤ\)
đặt \(b-a=c-b=d-c=k\left(k\inℤ\right)\)
ta có : \(b-a=k\Rightarrow a=b-k\)
\(c-b=k\Rightarrow c=k+b\)
\(d-c=k\Rightarrow d=c+k\)
ta có : \(c^2\ge0\Rightarrow d^2\le c^2+d^2< 4\Rightarrow d^2< 4\)
mà \(d=c+k\Rightarrow\left(c+k\right)^2< 4\Rightarrow\left(k+b+k\right)^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\) ( vì \(b=2\) ) \(\Rightarrow\text{ }\left[2\left(1+k\right)\right]^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\Rightarrow\left(1+k\right)^2< 1\) mà \(\left(1+k\right)^2\ge0\)
\(\Rightarrow0\le\left(1+k\right)^2< 1\Rightarrow0\le1+k< 1\Rightarrow1+k=0\Rightarrow k=-1\)( vì \(k\inℤ\Rightarrow1+k\inℤ\) )
ta có \(c=k+b=-1+2=1\) ( vì \(b=2;k=-1\) )
\(\Rightarrow d=c+k=1+\left(-1\right)=0\) ( vì \(c=1;k=-1\) )
\(\Rightarrow a=b-k=2-\left(-1\right)=3\)
thử lại
\(2b=a+c=2.2=3+1\Rightarrow4=4\) ( thỏa mãn )
\(2c-b+d=2.1=2+0\Rightarrow2=2\) ( thỏa mãn )
\(c^2+d^2< 4\Rightarrow1^2+0^2< 4\Rightarrow1< 4\) ( thỏa mãn )
vậy \(a=3\)
ta có : 2b = a + c⇔b + b = a + c⇔b − a = c − b
2c = b + d⇔c + c = b + d⇔c − b = d − c
⇒b − a = d − c
vì a;b;c;d ∈ ℤ⇒b − a;d − c ∈ ℤ
đặt b − a = c − b = d − c = k k ∈ ℤ
ta có : b − a = k⇒a = b − k
c − b = k⇒c = k + b
d − c = k⇒d = c + k
ta có : c
2
≥ 0⇒d
2
≤ c
2
+ d
2
< 4⇒d
2
< 4
mà d = c + k⇒ c + k
2
< 4⇒ k + b + k
2
< 4
⇒4 1 + k
2
< 4 ( vì b = 2 ) ⇒ 2 1 + k
2
< 4
⇒4 1 + k
2
< 4⇒ 1 + k
2
< 1 mà 1 + k
2
≥ 0
⇒0 ≤ 1 + k
2
< 1⇒0 ≤ 1 + k < 1⇒1 + k = 0⇒k = −1( vì
k ∈ ℤ⇒1 + k ∈ ℤ )
ta có c = k + b = −1 + 2 = 1 ( vì b = 2;k = −1 )
⇒d = c + k = 1 + −1
a: Bốn điểm A,B,C,D luôn thẳng hàng
b: 5 điểm A,B,C,D,E có thể không thẳng hàng
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số\(\left(đpcm\right)\)