giải và biện luận các phương trình ( a và k là những tham số ) : a) a/x-2 +1/x-2a =1 ; b) 3x+k/x-3 = x-k/x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-a\right)^n=\left(a-1\right)^2\)
Nếu n lẻ thì \(x-a=\sqrt[n]{\left(a-1\right)^2}\) do đó \(x=a+\sqrt[n]{\left(a-1\right)^2}\)
Nếu n chẵn , \(n=2k\left(k\inℕ^∗\right)\) thì \(x-a=\pm\sqrt[2k]{\left(a-1\right)^2}\) vì \(\left(a-1\right)^1\ge0\) có 2 căn bậc hai đối nhau
Do đó: \(x=a\pm\sqrt[k]{|a-1|}\)
Nếu \(a\ge1\) thì \(x=a\pm\sqrt[k]{a-1}\)
Nếu a < 1 thì \(x=a\pm\sqrt[k]{1-a}\)
=.= hok tốt!!
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất