Gọi z 1 ; z 2 là các nghiệm phức của phương trình z 2 + 4 z + 7 = 0 . Số phức z 1 z 2 + z 1 z 2 bằng
A. 2
B. 10
C. 2i
D. 10i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Do nên tập hợp điểm M là các điểm nằm ngoài đường tròn và nằm trong đường tròn
Dựa vào hình vẽ ta chứng minh được
Khi đó
Đáp án A.
Ta có
Lấy môđun hai vế, ta được
Đặt khi đó (*)
Đáp án A.
Ta có 1 = z - 2 - 3 i 2 = z - 2 - 3 i . z - 2 - 3 i ¯ = z - 2 - 3 i z ¯ - 2 + 3 i ¯ = z - 2 - 3 i z ¯ - 2 + 3 i
Lấy môđun hai vế, ta được z - 2 - 3 i . z ¯ - 2 + 3 i = 1 ⇔ z ¯ - 2 + 3 i = 1 ( * )
Đặt w = z ¯ + 1 + i ⇔ z ¯ = w - 1 - i , khi đó (*) ⇔ w - 1 - 2 - 3 i = 1 ⇔ w - 3 + 2 i = 1 .
⇒ w m i n = 3 2 + 2 2 - 1 = 13 - 1 w m i n = 3 2 + 2 2 - 1 = 13 + 1 ⇒ M = 13 + 1 m = 13 - 1 ⇒ M 2 + m 2 = 13 + 1 2 + 13 - 1 2 = 28 .
\(z^2-4z+5=0\Rightarrow\left\{{}\begin{matrix}z_1+z_2=4\\z_1z_2=5\end{matrix}\right.\) theo hệ thức Viet
\(w=\dfrac{z_1+z_2}{z_1z_2}+i.z_1z_2\left(z_1+z_2\right)=\dfrac{4}{5}+i.5.4=\dfrac{4}{5}+20i\)
Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)