K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Câu 1:

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}\)

=>\(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

29 tháng 12 2016

Câu 2:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

+)\(a+b+c=0\)

=> \(a=-\left(b+c\right);b=-\left(c+a\right);c=-\left(a+b\right)\)

=>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)

+)\(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau: 

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy ......................

Câu 3:

Thiếu đề rồi !?

23 tháng 6 2017

a, b sai đề

c, Ta có: \(VT=a\left(c-b\right)-b\left(-a-c\right)=ac-ab+ab+bc\)

\(=ac+bc=c\left(a+b\right)=VP\)

\(\Rightarrowđpcm\)

9 tháng 3 2016

chia hết cho n+1 nha các bạn

30 tháng 12 2021

? nghĩa là    sao

20 tháng 1 2019

1. 

\(A=\left(x+y\right)-\left(z+t\right)\)

\(A=x+y-z-t\)

\(A=\left(x-z\right)+\left(y-t\right)\)

\(\Rightarrow A=B\)

20 tháng 1 2019

\(3+\left(-2\right)+x=5\)

\(1+x=5\)

\(x=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-56}{7}=-8\)

Do đó: a=-80; b=-120; c=-96

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)