Bài 1: Cho \(\alpha\&\beta\) là hai góc phụ nhau . Biết \(\cos\alpha=\dfrac{1}{2}\). Tính giá trị của biểu thức : P = \(3\sin^2\alpha+4\tan^3\beta\)
Bài 2: a) Tính P = \(4\sin^2\alpha-6\cos^2\alpha\) , biết \(\cos\alpha=\dfrac{4}{5}\)
b) Cho \(\alpha\) là góc nhọn . Rút gọn biểu thức : A = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Giúp mình vs cần gấp lắm !!!
Bài 2:
a: \(\sin a=\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)
\(P=4\cdot\sin^2a-6\cdot\cos^2a\)
\(=4\cdot\dfrac{9}{25}-6\cdot\dfrac{16}{25}\)
\(=\dfrac{36-64}{25}=\dfrac{-28}{25}\)
b: \(A=\sin^6a+\cos^6a+3\cdot\sin^2a\cdot\cos^2a\)
\(=\left(\sin^2a+\cos^2a\right)^3-3\sin^2a\cdot\cos^2a\cdot\left(\sin^2a+\cos^2a\right)+3\cdot\sin^2a\cdot\cos^2a\)
\(=1-3\sin^2a\cdot\cos^2a+3\sin^2a\cdot\cos^2a\)
=1