Câu 1 : (Chuyên NAM Định 2016 )
Cho a,b,c là các số thực thỏa mãn các điều kiện a+b+c=6 ;\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{47}{60}\)
Tính giá trị của biểu thức \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)
\(\Leftrightarrow a+b+c=0\left(1\right)\)
Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)
Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)
Gọi nghiệm của phương trình 6x2+20x+15=0 là t1và t2 .
Nếu ta giả sử rằng a=t1 thì b=\(\frac{1}{t_2}\)
Lúc này biểu thức đã cho trở thành :
\(\frac{\frac{1}{t^3_2}}{\frac{t_1}{t^2_2}-9\left(\frac{t_1}{t_2}+1\right)^3}\)\(=\frac{1}{t_1.t_2-9\left(t_1+t_2\right)^3}\)
Bây giờ chỉ cần thay các giá trị t1+t2 và t1.t2 từ phương trình bậc 2 vào biểu thức trên để có đáp án.
P/s : nếu chưa học pt bậc 2 thì k làm được đâu
P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
Đặt \(x=1-a\), \(y=1-b\), \(z=1-c\)
Ta có : \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\)
\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)
\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)
Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
:]] đề sai rồi:
\(a^3+3a=b^3+3b\)
\(\Leftrightarrow\left(a^3-b^3\right)+\left(3a-3b\right)=0\)
\(\Leftrightarrow\left(a-b\right).\left(a^2+ab+b^2+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a^2+ab+\frac{b^2}{4}\right)+\frac{3}{4}b^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=-3\left(\text{loại vì }VP\ge0,\text{VT}< 0\right)\end{cases}}}\)
Nếu a+b=-3 (như trên), mà a=b => a=b=-3/2. Thao -3/2 vào a3+3a khác 2 :)))
Nếu tồn tại 3 số nguyên a,b,c thõa mãn
abc+a=-625
abc+b=-633
abc+c=-597
Chỉ có 2 số lẻ thì tích mới là 1 số lẻ
Vì a,b,c là số lẻ
Nên abc cũng là số lẻ
Mà abc+a là chẵn ko thể bằng số -625 ( số lẻ)
abc+b ... tương tự như trên
Nên ko tồn tại số nguyên a b c thõa mãn đk đề bài đã cho
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Nhân 2 vế của 2 ĐT đề bài ta có
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)
<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)
=>\(P=\frac{17}{10}\)
Vậy \(P=\frac{17}{10}\)