Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
a)27n:3n=9
(27:3)n=9
9n=91
n=1
Vậy n=1
b)\(\left(\frac{25}{5}\right)^n=5\)
\(5^n=5^1\)
n=1
Vạy n=1
c)\(\left(-\frac{81}{3}\right)^n=-243\)
\(\left(-27\right)^n=\left(-3\right)^5\)
\(\left[\left(-3\right)^3\right]^n=\left(-3\right)^5\)
\(\left(-3\right)^{3n}=\left(-3\right)^5\)
\(3n=5\)
\(n=\frac{5}{3}\)
Vậy \(n=\frac{5}{3}\)
d)\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
\(2^n.\left(\frac{1}{2}+4\right)=9.5^n\)
\(2^n.\frac{9}{2}=3^2.5^n\)
a) 2-1.2x + 4.2x = 9.25
=> 2x-1 + 4.2.2x-1 = 9.25
=> 2x-1 + 8.2x-1 = 9.25
=> 2x-1.(1 + 8) = 9.25
=> 2x-1.9 = 9.25
=> x - 1 = 5
=> x = 5 + 1 = 6
Vậy x = 6
b) (7x + 2)-1 = \(\frac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 7 : 7 = 1
Vậy x = 1
a) 2^(-1) . 2^x + 4 . 2^x = 9 . 2^5
=> 1/2 . 2^x + 4 . 2^x = 9 . 32
=> 2^x . (1/2 + 4) = 288
=> 2^x . 9/2 = 288
=> 2^x = 288 : 9/2
=> 2^x = 64
2^x = 2^6
=> x = 6
b) (7x + 2)^(-1) = 1/9
=> 1 phần 7x + 2 = 1/9
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 7 : 7
=> x = 1
Bài làm:
Bài 1
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\rightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Bài 2
a) \(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)
Bài 3
a) \(9\times3^3\times\frac{1}{81}\times3^2=3^2\times3^3\times\frac{1}{3^4}\times3^2=3^3\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)=2^2\times2^5\div\left(2^3\times\frac{1}{2^4}\right)=2^7\div\frac{1}{2}=2^6\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2=3^2\times2^5\times\frac{2^2}{3^2}=3^2\times\frac{2^7}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{3}\times9^2=\left(\frac{1}{3}\right)^3\times3^4=\frac{1}{3^3}\times3^4=3^1\)
a) 27^n : 3^n = 9
(27 : 3)^n = 9
9^n = 9
=> n = 1
b) 25/5^n = 5
5^n = 25 : 5
5^n = 5
=> n = 1
c) 81/(-3)^n = -243
(-3)^n = -243 : 81
(-3)^n = -3
=> n = 1
d) 1/2 . 2^n + 4 . 2^n = 9 . 2^5
2^n . (1/2 + 4) = 9 . 32
2^n . 9/2 = 288
2^n = 288 : 9/2
2^n = 64
2^n = 2^6
=> n = 6
Ta có:\(23.\frac{1}{4}.\frac{7}{5}-13.\frac{1}{4}.\frac{7}{5}\)
\(=\left(23-13\right).\frac{1}{4}.\frac{7}{5}\)
\(=\frac{10.1.7}{4.5}=\frac{7}{2}\)
Vậy.................
a: =>9^n=9
=>n=1
b: =>5^n=5
=>n=1
c: \(\Leftrightarrow\left(-27\right)^n=-243\)
=>\(\left(-3\right)^{3n}=\left(-3\right)^5\)
=>3n=5
=>n=5/3
d: =>2^n*9/2=9*2^5
=>2^n=9*2^5:9/2=2^5*2=2^6
=>n=6
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
\(\dfrac{9^4.2^{15}}{2^6.24^3}\) = \(\dfrac{9^4.2^9}{24^3}\) = \(\dfrac{2^9.3^8}{2^9.3^3}\) = 35 = 243
\(\dfrac{9^4\cdot2^{15}}{2^6\cdot24^3}=\dfrac{\left(3^2\right)^4\cdot2^{15}}{2^6\cdot\left(8\cdot3\right)^3}=\dfrac{3^8\cdot2^{15}}{2^6\cdot8^3\cdot3^3}=\dfrac{3^8\cdot2^{15}}{2^6\cdot2^9\cdot3^3}=\dfrac{3^8\cdot2^{15}}{2^{15}\cdot3^3}=3^5=243\)
$\frac {-5}{4} . \frac {7}{9} + \frac {-5}{4} . \frac {2}{9}$
$= \frac {-5}{4} . (\frac {7}{9} + \frac{2}{9})$
$= \frac {-5}{4} . 1$
$=\frac {-5}{4}$
=-5/4