Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
Ta có (x - 2)2 ≥ 0
⇒ (x - 2)2 - 3 ≥ -3
Dấu "=" xảy ra
⇔ (x - 2)2 = 0
⇔ x - 2 = 0
⇔ x = 2
Vậy, MIN (x - 2)2 - 3 = -3 ⇔ x = 2
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a/ \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ..
b/ \(x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy ..
c/ \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ..
d/ \(\left(2x+3\right)^2=49\)
\(\Leftrightarrow\left(2x+3\right)^2=7^2=\left(-7\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ..
a. (x-1)2 = 0
=> x-1=0 => x=1
b. x(x-5) = 0
=> \(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
c. x2 + 4x = 0
x(x+4) = 0
=>\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
d. (2x+3)2 = 49
(2x+3)2 = \(\left(\pm7\right)^2\)
=>\(\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
1
C=3210=32.105=(32)105=9105
D=2310=23.105=(23)105=8105
Vì9105>8105
=>C>D
2
a)2x.(3y-2)+(3y-2)=6
(3y-2).(2x+1)=6
=>6\(⋮\)2x+1
=>2x+1\(\in\)Ư(6)={1;2;3;-1;-2;-3}
Mà 2x+1 là số lẻ
=>2x+1\(\in\){1;3;-1;-3}
Ta có bảng sau:
2x+1 | -1 | -3 | 1 | 3 |
3y-2 | -6 | -2 | 6 | 2 |
x | \(-1\notin N\) | \(-2\notin N\) | \(0\in N\) | \(1\in N\) |
y | \(\frac{-4}{3}\notin N\) | \(0\in N\) | \(\frac{8}{3}\notin N\) | \(\frac{4}{3}\notin N\) |
Vậy x\(\in\){0;1}
y\(\in\){0}
Phần này bạn lên học 24h nha Câu hỏi của Đỗ Thế Minh Quang
Chúc bn học tốt
Vì 3y chia hết 3
x2 chỉ chia hết cho 3 hay chia 3 dư 1
Nên x2 + 3y chia hết cho 3 hay chia 3 dư 1.
Mà 3026 lại chia 3 dư 2
Nên x, y∈∅
Okê chưa!