K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Hình bình hành ABCD có \(\widehat{BAD}=90^0\)

nên ABCD là hình chữ nhật

b: ABCD là hình chữ nhật

=>AD//BC và AD=BC

AD=BC

AD=DE

Do đó: DE=CB

Xét tứ giác EDBC có

ED//BC

ED=BC

Do đó: EDBC là hình bình hành

=>EB cắt DC tại trung điểm của mỗi đường

=>I là trung điểm của EB

=>IE=IB

c: Xét ΔACK có

H,M lần lượt là trung điểm của AK,AC

=>HM là đường trung bình

=>HM//CK

=>CK//BD

Xét ΔDAK có

DH là đường cao, là đường trung tuyến

Do đó: ΔDAK cân tại D

=>DA=DK

mà DA=BC

nên DK=BC

Xét tứ giác BKCD có CK//BD

nên BKCD là hình thang

mà BC=KD

nên BKCD là hình thang cân

27 tháng 10 2023

Cảm ơn bạn

 

26 tháng 11 2023

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Hình bình hành ABCD có \(\widehat{BAD}=90^0\)

nên ABCD là hình chữ nhật

b: ABCD là hình chữ nhật

=>AD//BC và AD=BC

AD//BC

D\(\in\)AE

Do đó: ED//BC

AD=BC

ED=DA

Do đó: BC=ED

Xét tứ giác EDBC có

ED//BC

ED=BC

Do đó: EDBC là hình bình hành

=>EB cắt DC tại trung điểm của mỗi đường

mà I là trung điểm của DC

nên I là trung điểm của EB

=>IE=IB

c: Xét ΔACK có

H,M lần lượt là trung điểm của AK,AC

=>HM là đường trung bình của ΔACK

=>HM//CK

=>CK//DB

Xét ΔDAK có

DH là đường cao

DH là đường trung tuyến

Do đó:ΔDAK cân tại D

=>DA=DK

mà DA=BC(ABCD là hình chữ nhật)

nên DK=BC

Xét tứ giác BKCD có CK//BD

nên BKCD là hình thang

Hình thang BKCD có CB=DK

nên BKCD là hình thang cân

26 tháng 11 2023

có hình không bạn

 

26 tháng 12 2019

23456+9867[67453+987875

26 tháng 12 2019

gọi L là giao điểm của BD và AC.

Có: BL=LD, AL=LC =>  ABCD là hình bình hành.

Lại có ^A=90 =>  ABCD là HCN (ĐPCM)

b/ xét tam giác BCI và IED có:

BC=DE(.....)

^BCI = ^IDE=90 độ

CI = ID (.....)

=> tg BCI = tg IDE (c,g,c)

=> BI = IE (ĐPCM)

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

góc BAD=90 độ

=>ABCD là hình chữ nhật

b: Xét tứ giác EDBC có

ED//BC

ED=BC

=>EDBC là hình bình hành

=>Eb cắt CD tại trung điểm của mỗi đường

=>ID=IB

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

góc BAD=90 độ

Do đó: ABCD là hình chữ nhật

b: ED=DA

DA=CB

=>ED=CB

Xét tứ giác EDBC có

ED//BC

ED=BC

=>EDBC là hình bình hành

=>EB cắt DC tại trung điểm của mỗi đường

=>I là trung điểm của EB

=>IE=IB

c: Xét ΔACK có AH/AK=AM/AC

nên HM//CK

=>CK//BD

Xét ΔDAK có

DH vừa là đường cao, vừa là trung tuyến

=>ΔDAK cân tại D

=>DA=DK

mà DA=BC

nên DK=BC

Xét tứ giác CKBD có

CK//BD

CB=KD

=>CKBD là hình thang cân

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC