Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M= x2 - 2.3/2x + (3/2)2+1 -(3/2)2
M= (x - 3/2)2 +1 -9/4
M= (x- 3/2)2 - 5/4
Min M= - 5/4 khi x = 3/2
M = (x2 -3x+1)(x2 - 3x +1).
Nếu như vậy thì sao không cho M = (x2 -3x+1)2 hả bạn?
Nếu M = (x2 -3x+1) thì
\(B=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-16\ge-16\)
Dấu \("="\Leftrightarrow x^2+x+2=0\Leftrightarrow x\in\varnothing\left(x^2+x+2>0\right)\)
Vậy dấu \("="\) ko xảy ra nên sẽ ko tính đc GTNN
\(M=x^2+xy+y^2-3x-3\)
\(=\dfrac{1}{4}x^2+xy+y^2+\dfrac{3}{4}x^2-3x-3\)
\(=\left(\dfrac{1}{2}x+y\right)^2+3\left(\dfrac{1}{4}x^2-x-1\right)\)
\(=\left(\dfrac{1}{2}x+y\right)^2+3\left(\dfrac{1}{4}x^2-x+1-2\right)\)
\(=\left(\dfrac{1}{2}x+y\right)^2+3\left(\dfrac{1}{2}x-1\right)^2-6>=-6\forall x,y\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-1=0\\\dfrac{1}{2}x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}x=-\dfrac{1}{2}\cdot2=-1\end{matrix}\right.\)
mấy bài nầy dễ thôi. chỉ cần áp dụng các hằng đẳng thức là đc!
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
\(B=x^2-3x+15\)
\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{51}{4}\)
\(B=\left(x-\dfrac{3}{2}\right)^2+\dfrac{51}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{51}{4}\ge\dfrac{51}{4}\)
\(\)hay \(B\ge\dfrac{51}{4}\)
Dấu "=" xảy ra khi:
\(x-\dfrac{3}{2}=0\)
\(x=\dfrac{3}{2}\)
Vậy \(B_{min}=\dfrac{51}{4}\) khi \(x=\dfrac{3}{2}\)
\(\cdot NqHahh\)