Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\) \(\left(ĐK:x\ne1;x\ne2\right)\)
\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)
\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)
\(=\frac{x}{-x^2+2x}\)
\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)
b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)
\(\Leftrightarrow2-x=2\)
\(\Leftrightarrow-x=0\Leftrightarrow x=0\)
c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)
\(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\)
\(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)
\(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)
\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)
\(\Leftrightarrow1< x< 2\)
Vậy \(1< x< 2\) thì A<1
Cái biểu thức A ban ghi rõ thì mình mới giải được chứ , ghi như thế ai hiểu mà giải.
a: \(P=\dfrac{x^2+6x+9-x^2+6x-9-4}{\left(x-3\right)\left(x+3\right)}:\dfrac{3x-1}{x-3}\)
\(=\dfrac{4\left(3x-1\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{3x-1}=\dfrac{4}{x+3}\)
ĐKXĐ: \(x\ne1\)
c: Để A>1 thì \(A-1>0\)
=>\(\dfrac{x^2-x+1}{x-1}-1>0\)
=>\(\dfrac{x^2-x+1-x+1}{x-1}>0\)
=>\(\dfrac{x^2-2x+2}{x-1}>0\)
mà \(x^2-2x+2=\left(x-1\right)^2+1>=1>0\forall x\)
nên x-1>0
=>x>1
d: Để A nguyên thì \(x^2-x+1⋮x-1\)
=>\(x\left(x-1\right)+1⋮x-1\)
=>\(1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>\(x\in\left\{2;0\right\}\)
Để giải các bài toán liên quan đến hàm số \[ A = \frac{x^2 - x + 1}{x - 1}, \] ta cần phân tích hàm số này.
### 1. Tìm điều kiện để \( A > 1 \)
Để tìm các giá trị của \( x \) sao cho \( A > 1 \), ta sẽ làm theo các bước sau:
1. **Biến đổi hàm số**:
\[
A = \frac{x^2 - x + 1}{x - 1}
\]
Ta phân tích phân thức này bằng cách chia \( x^2 - x + 1 \) cho \( x - 1 \) bằng phép chia đa thức:
**Chia \( x^2 - x + 1 \) cho \( x - 1 \):**
- Chia \( x^2 \) cho \( x \) được \( x \).
- Nhân \( x \) với \( x - 1 \) được \( x^2 - x \).
- Trừ \( x^2 - x \) khỏi \( x^2 - x + 1 \) ta còn dư \( 1 \).
Vậy,
\[
\frac{x^2 - x + 1}{x - 1} = x + \frac{2}{x - 1}
\]
2. **Đặt điều kiện \( A > 1 \)**:
\[
x + \frac{2}{x - 1} > 1
\]
- Trừ 1 từ cả hai vế:
\[
x + \frac{2}{x - 1} - 1 > 0
\]
- Kết hợp các hạng tử:
\[
x - 1 + \frac{2}{x - 1} > 0
\]
- Đặt \( t = x - 1 \), ta có:
\[
t + \frac{2}{t} > 0
\]
- Phân tích bất phương trình:
\[
t^2 + 2 > 0
\]
Vì \( t^2 + 2 \) luôn dương (bất kể giá trị của \( t \)), bất phương trình luôn đúng với mọi giá trị của \( t \neq 0 \). Do đó, điều kiện để \( A > 1 \) là \( x \neq 1 \).
### 2. Tìm giá trị nguyên của \( x \) sao cho \( A \) là số nguyên
1. **Biến đổi hàm số**:
\[
A = x + \frac{2}{x - 1}
\]
Để \( A \) là số nguyên, thì \(\frac{2}{x - 1}\) phải là số nguyên. Điều này có nghĩa là \( x - 1 \) phải là một ước của 2.
2. **Tìm các ước của 2**:
- Các ước của 2 là \( \pm 1, \pm 2 \).
3. **Tìm các giá trị tương ứng của \( x \)**:
- Nếu \( x - 1 = 1 \), thì \( x = 2 \).
- Nếu \( x - 1 = -1 \), thì \( x = 0 \).
- Nếu \( x - 1 = 2 \), thì \( x = 3 \).
- Nếu \( x - 1 = -2 \), thì \( x = -1 \).
4. **Kiểm tra các giá trị**:
- Với \( x = 2 \):
\[
A = \frac{2^2 - 2 + 1}{2 - 1} = \frac{3}{1} = 3
\]
- Với \( x = 0 \):
\[
A = \frac{0^2 - 0 + 1}{0 - 1} = \frac{1}{-1} = -1
\]
- Với \( x = 3 \):
\[
A = \frac{3^2 - 3 + 1}{3 - 1} = \frac{7}{2} = 3.5
\]
(Không phải là số nguyên)
- Với \( x = -1 \):
\[
A = \frac{(-1)^2 - (-1) + 1}{-1 - 1} = \frac{3}{-2} = -1.5
\]
(Không phải là số nguyên)
### Kết quả:
- **Điều kiện để \( A > 1 \)** là \( x \neq 1 \).
- **Các giá trị nguyên của \( x \) để \( A \) là số nguyên** là \( x = 0 \) và \( x = 2 \).