Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x8 + x +1= x8 +x7 - x7 + x6 - x6 + x5 - x5 + x4 -x4 +x3 -x3 + x2 -x2 +x +1
= (x2+x+1)*(x6 -x5+x3-x2+1)
Đa thức có dạng \(x^{3a+1}+x^{3b+2}+1\) thì đưa về dạng \(\left(x^2+x+1\right)\cdot P\left(x\right)\) bạn nhé!
Bài làm:
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1^3\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2\left(x-1\right)+1\right)\)
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)
Ủng hộ nha ^ _ ^
\(x^4+x^3+x^2-1\)
\(=x^2\left(x^2-1\right)+x^2-1\)
\(=\left(x^2+1\right)\left(x^2-1\right)\)
\(x^2-x-2001.2002\)
= \(x^2+2001x-2002x-2001.2002\)
= \(x\left(x+2001\right)-2002\left(x+2001\right)\)
\(\left(x+2001\right)\left(x-2002\right)\)
\(x^{12}-3x^6+1=\left(x^{12}+x^9-x^6\right)-\left(x^9-x^3+x^6\right)-\left(x^3-1+x^6\right)=x^6\left(x^6+x^3-1\right)-x^3\left(x^6+x^3-1\right)-\left(x^6+x^3-1\right)\)
\(=\left(x^6+x^3-1\right)\left(x^6-x^3-1\right)\)
\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
câu b thì tương tự câu này
\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
câu cuối cũng giống câu này
\(x^8+x^4+1\)
\(\text{Phân tích đa thức thành nhân tử :}\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
Lát làm tiếp
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
Sửa đề:
`x^2 + x + x + 1`
`= (x^2 + x) + (x+1) `
`= x(x+1) + (x+1) `
`= (x+1)(x+1)`
`x^4 +x + x + 1`
`= (x^4 + x) + (x+1) `
`= x(x^3 + 1) + (x+1) `
`= x(x+1)(x^2 - x +1) + (x+1) `
`= (x+1) (x^3 - x^2 + x) + (x+1) `
`= (x+1) (x^3 - x^2 + x+1) `