Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>n^2-n+4n-4+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
mà n>=0
nên \(n\in\left\{2;0;6\right\}\)
=>6n+2 chia hết cho 2n+3
=>6n+9-7 chia hết cho 2n+3
=>2n+3 thuộc Ư(-7)
mà n là số tự nhiên
nên 2n+3=7
=>2n=4
=>n=2
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Goi ƯCLN(2n+1;3n+1) là d
=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d
=> \(6n+3-6n-2\) chia hết cho d
=> 1 chia d
=> d\(\inƯ_{\left(1\right)}\)
=> d=1 ; d= - 1
Mà d lớn nhất
=> d=1
Đặt UCLN (2n+1 và 3n+1)=d
\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d
\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d
\(\Rightarrow\) 1 chia hết cho d
\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1
\(\dfrac{9}{56}\) < \(\dfrac{a}{8}\) < \(\dfrac{b}{8}\) < \(\dfrac{13}{28}\) (a; b \(\in\) N)
\(\dfrac{9}{56}\) < \(\dfrac{7a}{56}\) < \(\dfrac{7b}{56}\) < \(\dfrac{26}{56}\)
9 < 7a < 7b < 26
\(\dfrac{9}{7}\) < a < b < \(\dfrac{26}{7}\)
1,286 < a < b < 3,7
vì a < b , a, b \(\in\) N
a = 2; b = 3
A ∈ N => 8 : (n - 2) ∈ N => (n - 2) ∈ Ư(8) = {1; 2; 4; 8}; (n - 2) > 0
=> ta có bảng:
n - 2 | 1 | 2 | 4 | 8 |
n | 3 | 4 | 6 | 10 |
Vậy n ∈ {3; 4; 6; 10}
Vì AϵN nên 8 : (n-2 ) ϵ N
=> n-2 ϵ Ư(8) ϵ{1 ; 2 ; 4; 8 } ; ( n-2 ) > 0
xét các th
n-2 | 2 | 8 | 4 | 1 |
n | 4 | 10 | 6 | 3 |
Để A là số tự nhiên thì \(\left\{{}\begin{matrix}8⋮n-2\\n>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\n>2\end{matrix}\right.\)
hay \(n\in\left\{3;4;6;10\right\}\)
`=> n - 2 in Ư(8)`
Ta có: `n in NN => n - 2 >= -2`.
`-> n - 2 in {-1, -2, 1, 2, 4, 8}`
`=> n - 2 in {1, 0, 3, 4, 6, 10}`.
\(8⋮3n+1\)
=>\(3n+1\in\left\{1;2;4;8\right\}\)
=>\(3n\in\left\{0;1;3;7\right\}\)
=>\(n\in\left\{0;\dfrac{1}{3};1;\dfrac{7}{3}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
FFbh