Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 150x2=300 mà 300 chia hết cho cả 30 và 150 suy ra BCNN(50,150)=300
b. 140x2=280 mà 280 chia hết cho 40,28 và 140 suy ra BCNN(40,28,140)=280
c. 200x3=600 mà 600 chia hết cho 100,120,200 suy ra BCNN(100,120,200)=600
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn : (35;28)
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn :
(35;28)
a) ta có:
80=24. 5 140=22.5.7
Thừa số nguyên tố chung là 2,5. Thừa số nguyên tố riêng là 7
Vậy BCNN(80,140)= 24.5.7= 560
b) ta có:
42=2.3.7
120=23.3.5
Thừa số nguyên tố chung là 2,3. Thừa số nguyên tố riêng 7,5
Vậy BCNN(42,120)=23.3.5.7=840
a: UC(56;140;84)={1;2;4;7;14;28}
BC(56;140;84)={420;840;...}
b: UCLN(56;140;84)=28
BCNN(56;140;84)=420
Bài 2:
a: \(56=2^3\cdot7\)
\(140=2^2\cdot5\cdot7\)
b: UCLN(56;140)=28
c: BCNN(56;140)=280
Bài 3:
a: BCNN(17;27)=459
b: BCNN(45;48)=720
c: BCNN(60;150)=300
a, Gọi d = (a,b) => a = md, b = nd (m,n thuộc Z+; (m,n) = 1)
Theo định nghĩa của BCNN ta có: [a,b] = dmn = 140
Ta có: a - b = 7
=>md - nd = 7
=>d(m - n) = 7
=> d là ƯC(7,140)
=> d = 1 hoặc d = 7
Với d = 1 \(\Rightarrow\orbr{\begin{cases}m-n=7\\mn=140\end{cases}}\) không có m,n thỏa mãn
Với d = 7 \(\Rightarrow\orbr{\begin{cases}m-n=1\\mn=20\end{cases}}\Rightarrow\orbr{\begin{cases}m=5\\n=4\end{cases}\Rightarrow\orbr{\begin{cases}a=5.7=35\\b=4.7=28\end{cases}}}\)
b, Giả sử \(a\le b\)
Vì (a,b)=10 => a=10m,b=10n \(\left(m\le n;m,n\in Z^+;\left(m,n\right)=1\right)\)
Theo định nghĩa của BCNN ta có: [a,b] = m.n.d = m.n.10 = 900 => m.n = 90
Ta có bảng:
m | 1 | 2 | 5 | 9 |
n | 9 | 5 | 2 | 1 |
a | 10 | 20 | 50 | 90 |
b | 90 | 50 | 20 | 10 |
a)56=2^3x7 140=2^2x5x7
b)ƯCLN(56;140)=2^2x7=28
c)BCNN(56;140)=2^3x5x7=280
Ta có:
\(40=2^3.5\\ 28=2^2.7\\ 140=2^2.5.7\\ \Rightarrow\text{BCNN}\left(40;28;140\right)=2^3.5.7=280\)
BCNN = 4